cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A323657 Number of strict solid partitions of n.

Original entry on oeis.org

1, 1, 1, 4, 4, 7, 16, 19, 28, 40, 82, 94, 145, 190, 274, 463, 580, 802, 1096, 1486, 1948, 3148, 3811, 5314, 6922, 9394, 11971, 16156, 23044, 28966, 38368, 50002, 65116, 83872, 108706, 137917, 192070, 236242, 308698, 390772, 506935, 633982, 817324, 1018090
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

A strict solid partition is an infinite three-dimensional array of distinct positive integers (and any number of zeros) summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros.

Examples

			The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))  ((3))       ((4))       ((5))       ((6))
                ((21))      ((31))      ((32))      ((42))
                ((2)(1))    ((3)(1))    ((41))      ((51))
                ((2))((1))  ((3))((1))  ((3)(2))    ((321))
                                        ((4)(1))    ((4)(2))
                                        ((3))((2))  ((5)(1))
                                        ((4))((1))  ((31)(2))
                                                    ((32)(1))
                                                    ((4))((2))
                                                    ((5))((1))
                                                    ((31))((2))
                                                    ((3)(2)(1))
                                                    ((32))((1))
                                                    ((3)(1))((2))
                                                    ((3)(2))((1))
                                                    ((3))((2))((1))
		

Crossrefs

Cf. A000219, A000293 (solid partitions), A000334, A001970, A002974, A008289, A114736, A117433 (strict plane partitions), A207542, A321662, A323657.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}]
    Table[Length[Join@@Table[Select[Tuples[strplptns/@y],And[UnsameQ@@Flatten[#],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])]&],{y,IntegerPartitions[n]}]],{n,10}]

Formula

a(n) = Sum_{k=1..n} A008289(n,k)*A207542(k) for n > 0. - John Tyler Rascoe, Dec 19 2024

Extensions

a(21) onwards from John Tyler Rascoe, Dec 19 2024

A002974 Number of restricted solid partitions of n.

Original entry on oeis.org

1, 1, 4, 7, 11, 20, 35, 59, 99, 165, 270, 443, 723, 1161, 1861, 2961, 4654, 7279, 11317, 17476, 26879, 41132, 62601, 94878, 143172, 215115, 321995, 480216, 713655, 1057192
Offset: 1

Views

Author

Keywords

Comments

Definition, based on Math. Review MR0297583: By a solid partition of n is meant a 3-dimensional arrangement of positive integers N(x,y,z) satisfying the conditions (i) the integer N(x,y,z) is located at the point with Cartesian coordinates (x,y,z); N(x,y,z) is defined only for certain integers x,y,z >= 0, and (ii) if N(x,y,z) is defined and 0 <= x' <= x, 0 <= y' <= y, 0 <= z' <= z then N(x,y,z) is defined and N(x',y',z') <= N(x,y,z). A solid partition is said to correspond to an (ordinary) partition of n=n_1+n_2+...+n_t, n_k>0, if there is a one-to-one correspondence between the summands n_k and the points (x_k,y_k,z_k) for which N is defined so that n_k=N(x_k,y_k,z_k). Finally, a restricted solid partition is a solid partition such that x'<=x, y'<=y, z'<=z and N(x',y',z')=N(x,y,z) implies x'=x, y'=y, z'=z.
Alternatively, a restricted solid partition is an infinite three-dimensional array of nonnegative integers summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros. - Gus Wiseman, Jan 22 2019

Examples

			From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(6) = 20 restricted solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))  ((3))       ((4))          ((5))           ((6))
                ((21))      ((31))         ((32))          ((42))
                ((2)(1))    ((3)(1))       ((41))          ((51))
                ((2))((1))  ((21)(1))      ((3)(2))        ((321))
                            ((3))((1))     ((4)(1))        ((4)(2))
                            ((21))((1))    ((31)(1))       ((5)(1))
                            ((2)(1))((1))  ((3))((2))      ((31)(2))
                                           ((4))((1))      ((32)(1))
                                           ((31))((1))     ((41)(1))
                                           ((3)(1))((1))   ((4))((2))
                                           ((21)(1))((1))  ((5))((1))
                                                           ((31))((2))
                                                           ((3)(2)(1))
                                                           ((32))((1))
                                                           ((41))((1))
                                                           ((3)(1))((2))
                                                           ((3)(2))((1))
                                                           ((4)(1))((1))
                                                           ((31)(1))((1))
                                                           ((3))((2))((1))
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000219, A000293 (solid partitions), A000334, A001970, A114736 (restricted plane partitions), A117433 (strict plane partitions), A321662, A323657 (strict solid partitions).

Programs

  • Mathematica
    srcplptns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And[And@@(GreaterEqual@@@Transpose[PadRight[#]]),And@@Greater@@@#,And@@(Greater@@@DeleteCases[Transpose[PadRight[#]],0,{2}])]&],{ptn,IntegerPartitions[n]}];
    srcsolids[n_]:=Join@@Table[Select[Tuples[srcplptns/@y],And[And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)]),And@@(Greater@@@DeleteCases[Transpose[Join@@@(PadRight[#,{n,n}]&/@#)],0,{2}])]&],{y,IntegerPartitions[n]}]
    Table[Length[srcsolids[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

More terms from Sean A. Irvine, Dec 15 2014

A323451 Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 9, 12, 19, 27, 39, 54, 79, 107, 150, 209, 282, 387, 525, 707, 949, 1272, 1688, 2244, 2968, 3902, 5125, 6712, 8752, 11383, 14780, 19109, 24671, 31768, 40791, 52280, 66860, 85296, 108621, 138054, 175085, 221676, 280161, 353414, 445098, 559661
Offset: 0

Views

Author

Gus Wiseman, Jan 16 2019

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers.

Examples

			The a(8) = 19 generalized Young tableaux:
  8   1 7   2 6   3 5   1 2 5   1 3 4
.
  1   2   3   1 2   1 5   1 3   1 4   2 3   1 2   1 2 3
  7   6   5   5     2     4     3     3     2 3   2
.
  1   1   1 2
  2   3   2
  5   4   3
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@sqfacs[n],{2}]];
    Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&&And@@(UnsameQ@@@DeleteCases[Transpose[PadRight[#]],0,{2}])&]],{y,IntegerPartitions[n]}],{n,10}]

Extensions

a(21)-a(45) from Seiichi Manyama, Aug 19 2020

A323580 Number of ways to fill a Young diagram with positive integers summing to n such that the rows are weakly decreasing and the columns are weakly increasing.

Original entry on oeis.org

1, 1, 3, 6, 13, 23, 45, 76, 136, 225, 381, 611, 1001, 1570, 2489, 3842, 5948, 9022, 13714, 20501, 30649, 45262, 66721, 97393, 141888, 204993
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2019

Keywords

Examples

			The a(5) = 23 tableaux:
  5   41   32   311   221   2111   11111
.
  1   2   11   21   11   111   111   1111
  4   3   3    2    21   2     11    1
.
  1   1   11   11   111
  1   2   1    11   1
  3   2   2    1    1
.
  1   11
  1   1
  1   1
  2   1
.
  1
  1
  1
  1
  1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Select[Reverse/@Sort/@Map[primeMS,facs[y],{2}],And@@(GreaterEqual@@@Transpose[PadRight[#]])&]],{y,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]

A323581 Number of ways to fill a Young diagram with positive integers summing to n such that the rows are strictly increasing and the columns are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 10, 14, 19, 28, 34, 48, 60, 80, 106, 134, 171, 222, 279, 354, 452, 562, 706, 884, 1100
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2019

Keywords

Examples

			The a(8) = 14 tableaux:
  8   1 7   2 6   3 5   1 2 5   1 3 4
.
  7   6   5   2 5   3 4   2 3
  1   2   3   1     1     1 2
.
  5   4
  2   3
  1   1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Sum[Length[Select[Reverse/@Sort/@Map[primeMS,sqfacs[y],{2}],And@@Greater@@@DeleteCases[Transpose[PadRight[#]],0,{2}]&]],{y,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]

A323586 Number of plane partitions of n with no repeated rows (or, equivalently, no repeated columns).

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 30, 53, 89, 158, 265, 443, 735, 1197
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2019

Keywords

Examples

			The a(4) = 8 plane partitions with no repeated rows:
  4   31   22   211   1111
.
  3   21   111
  1   1    1
The a(6) = 30 plane partitions with no repeated columns:
  6   51   42   321
.
  5   4   41   3   31   32   31   22   21   221   211
  1   2   1    3   2    1    11   2    21   1     11
.
  4   3   31   2   21   22   21   111
  1   2   1    2   2    1    11   11
  1   1   1    2   1    1    1    1
.
  3   2   21   11
  1   2   1    11
  1   1   1    1
  1   1   1    1
.
  2   11
  1   1
  1   1
  1   1
  1   1
.
  1
  1
  1
  1
  1
  1
		

Crossrefs

Cf. A000219, A003293 (strict rows), A114736 (strict rows and columns), A117433 (distinct entries), A299968, A319646 (no repeated rows or columns), A323429, A323436 (plane partitions of type), A323580, A323587.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[UnsameQ@@#,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,IntegerPartitions[n]}],{n,10}]
Previous Showing 21-26 of 26 results.