cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A129116 Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 3, 24, 1, 2, 3, 8, 120, 1, 2, 3, 4, 15, 720, 1, 2, 3, 4, 10, 48, 5040, 1, 2, 3, 4, 5, 18, 105, 40320, 1, 2, 3, 4, 5, 12, 28, 384, 362880, 1, 2, 3, 4, 5, 6, 21, 80, 945, 3628800, 1, 2, 3, 4, 5, 6, 14, 32, 162, 3840, 39916800, 1, 2, 3, 4, 5, 6, 7, 24, 45, 280, 10395, 479001600
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
Similar to A114423 (with rows and columns exchanged). - Georg Fischer, Nov 02 2021

Examples

			Table begins:
  k / A(k,n)
  1 | 1 2 6 24 120 720 5040 40320 362880 3628800 ... = A000142.
  2 | 1 2 3  8  15  48  105   384    945    3840 ... = A006882.
  3 | 1 2 3  4  10  18   28    80    162     280 ... = A007661.
  4 | 1 2 3  4   5  12   21    32     45     120 ... = A007662.
  5 | 1 2 3  4   5   6   14    24     36      50 ... = A085157.
  6 | 1 2 3  4   5   6    7    16     27      40 ... = A085158.
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A114423 (transposed).

Programs

  • Maple
    A:= proc(k,n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)

Formula

A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021

Extensions

Corrected and extended by Alois P. Heinz, Feb 02 2009

A297707 a(n) = Product_{k=1..n-1} n!k, where n!k is k-tuple factorial of n.

Original entry on oeis.org

1, 2, 18, 768, 90000, 44789760, 30494620800, 121762322841600, 393644011735296000, 5618427494400000000000, 107587910030480590233600000, 5951222311476064581656248320000, 176804782652901880753915871232000000, 69819090744423637487544223697731584000000
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jan 03 2018

Keywords

Comments

What is the least n > 2 for which a(n) - prevprime(a(n)) is a composite number? If such a number n exists, it is greater than 250.
The least n for which nextprime(a(n)) - a(n) is a composite number is 158.

Examples

			a(2) = (2!1) = (2*1) = 2;
a(3) = (3!1)*(3!2) = (3*2*1)*(3*1) = 18;
a(4) = (4!1)*(4!2)*(4!3) = (4*3*2*1)*(4*2)*(4*1) = 768;
a(5) = (5!1)*(5!2)*(5!3)*(5!4) = (5*4*3*2*1)*(5*3*1)*(5*2)*(5*1) = 90000.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<1, 1, n*b(n-k, k)) end:
    a:= n-> mul(b(n, k), k=1..n-1):
    seq(a(n), n=1..20);  # Alois P. Heinz, Dec 02 2018
  • Mathematica
    Array[(#^(# - 1)) Product[k^DivisorSigma[0, # - k], {k, # - 1}] &, 13] (* Michael De Vlieger, Jan 04 2018 *)
  • PARI
    a(n) = (n^(n-1))*prod(k=1, n-1, k^numdiv(n-k)); \\ Michel Marcus, Dec 02 2018

Formula

a(n) = Product_{t=1..n-1} (Product_{k=0..floor((n-1)/t)} (n-t*k)).
a(n) = (n^(n-1))*Product_{k=1..n-1} k^tau(n-k).

A114423 Multifactorial array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 24, 3, 2, 1, 1, 120, 8, 3, 2, 1, 1, 720, 15, 4, 3, 2, 1, 1, 5040, 48, 10, 4, 3, 2, 1, 1, 40320, 105, 18, 5, 4, 3, 2, 1, 1, 362880, 384, 28, 12, 5, 4, 3, 2, 1, 1, 3628800, 945, 80, 21, 6, 5, 4, 3, 2, 1, 1, 39916800, 3840, 162, 32, 14, 6, 5, 4, 3, 2, 1, 1
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

The columns are n!, n!!, n!!!, ... n!k for n >= 0, k >= 1.

Examples

			Table M begins:
  n / M(n,k)
  0 |   1   1   1   1   1
  1 |   1   1   1   1   1
  2 |   2   2   2   2   2
  3 |   6   3   3   3   3
  4 |  24   8   4   4   4
  5 | 120  15  10   5   5
  6 | 720  48  18  12   6
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A129116 (transposed).

Programs

  • Mathematica
    NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]},
         While[k > m, k -= m; p *= k]; p];
    Table[NFactorialM[n - m + 1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2021, after Robert G. Wilson v in A007662 *)

Formula

M(n,k) = n!k.
M(n,k) = A129116(k,n). - Georg Fischer, Nov 02 2021

Extensions

Edited by Alois P. Heinz, Apr 24 2025

A117607 Integer complexity of n represented with {1,+,!} and parentheses, where ! can be concatenated for multifactorials.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 4, 4, 5, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 6, 4, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 3, 4, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Apr 06 2006

Keywords

Comments

Using the set of symbols {1, +, !} and parentheses, how many 1's does it take to represent n? "!!" is double factorial, "!!!" is triple factorial and so forth.
lim inf = 3, lim sup = infinity. What is the average behavior of this sequence? - Charles R Greathouse IV, Jun 15 2012

Examples

			a(1) = 1 because there is one 1 in "1".
a(2) = 2 because "1 + 1".
a(6) = 3 because "(1+1+1)!".
a(7) = 4 because "(1+1+1)!+1".
a(8) = 4 because "(1+1+1+1)!!" using double factorial.
a(12) = 3 because "((1+1+1)!)!!!!" using quadruple factorial.
a(15) = 5 because "(1+1+1+1+1)!!" using double factorial.
a(16) = 4 because "((1+1+1+1)!!)!!!!!!" using double factorial and sextuple factorial.
a(24) = 3 because "(((1+1+1)!)!!!!)!!!!!!!!!!" using quadruple factorial and decuple factorial.
a(36) = 3 because "(((1+1+1)!)!!!!)!!!!!!!!!" using quadruple factorial and nonuple factorial.
		

Crossrefs

n! = A000142. n!! = A006882. n!!! = A007661. n!!!! = A007662. n!!!!! = A085157. n!!!!!! = A085158. n!!!!!!! = A114799. n!!!!!!!! = A114800. n!!!!!!!!! = A114806.
Previous Showing 11-14 of 14 results.