cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A246432 Convolution inverse of A001700.

Original entry on oeis.org

1, -3, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452
Offset: 0

Views

Author

Michael Somos, Nov 14 2014

Keywords

Examples

			G.f. = 1 - 3*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 - 42*x^6 - 132*x^7 - 429*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +Sqrt(1-4*x))/2 -2*x)); // G. C. Greubel, Aug 04 2018
  • Mathematica
    CoefficientList[Series[(1 +Sqrt[1-4*x])/2 -2*x, {x, 0, 50}], x] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = if( n<2, (n==0) - 3*(n==1), - binomial(2*n - 2, n-1) / n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + sqrt(1 - 4*x + x * O(x^n))) / 2 - 2*x, n))};
    

Formula

G.f.: (1 + sqrt(1 - 4*x)) / 2 - 2*x.
G.f.: -2*x + 1 - x / (1 - x / (1 - x / ...)) (continued fraction).
a(n) = A115140(n) = A115141(n) for all n in Z unless n=1.
a(n) = -A000108(n-1) for all n>1.

A309867 Expansion of Product_{k>0} (1+sqrt(1-4*x^k))/2.

Original entry on oeis.org

1, -1, -2, -2, -5, -9, -36, -104, -365, -1219, -4213, -14617, -51570, -183084, -656536, -2370066, -8613590, -31478538, -115632718, -426676244, -1580878746, -5878933054, -21936060630, -82100980070, -308146839623, -1159545407027, -4373730398473, -16533813947503
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2019

Keywords

Crossrefs

Convolution inverse of A322204.

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+Sqrt[1-4*x^k])/2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 06 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+sqrt(1-4*x^k))/2))
    
  • PARI
    N=66; x='x+O('x^N); Vec(prod(i=1, N, 1-sum(j=1, N\i, binomial(2*j-2, j-1)*x^(i*j)/j)))

Formula

a(n) ~ -c * 2^(2*n - 1) / (sqrt(Pi) * n^(3/2)), where c = Product_{k>=1} (1 + sqrt(1 - 4*(1/4)^k))/2 = 0.4567034206737725013365271429022657551331606541289778092649... - Vaclav Kotesovec, May 06 2021

A237621 Riordan array (1+x, x*(1-x)); inverse of Riordan array A237619.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, -1, -1, 1, 0, 0, -1, -2, 1, 0, 0, 1, 0, -3, 1, 0, 0, 0, 2, 2, -4, 1, 0, 0, 0, -1, 2, 5, -5, 1, 0, 0, 0, 0, -3, 0, 9, -6, 1, 0, 0, 0, 0, 1, -5, -5, 14, -7, 1, 0, 0, 0, 0, 0, 4, -5, -14, 20, -8, 1, 0, 0, 0, 0, 0, -1, 9, 0, -28, 27, -9, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 10 2014

Keywords

Examples

			Triangles begins:
  1;
  1,  1;
  0,  0,  1;
  0, -1, -1,  1;
  0,  0, -1, -2,  1;
  0,  0,  1,  0, -3,  1;
  0,  0,  0,  2,  2, -4,  1;
  0,  0,  0, -1,  2,  5, -5,  1;
  0,  0,  0,  0, -3,  0,  9, -6,  1;
  0,  0,  0,  0,  1, -5, -5, 14, -7, 1;
...
Production matrix is:
     1,    1;
    -1,   -1,    1;
     0,   -1,   -1,   1;
    -1,   -2,   -1,  -1,   1;
    -2,   -5,   -2,  -1,  -1,  1;
    -6,  -14,   -5,  -2,  -1, -1,  1;
   -18,  -42,  -14,  -5,  -2, -1, -1,  1;
   -57, -132,  -42, -14,  -5, -2, -1, -1,  1;
  -186, -429, -132, -42, -14, -5, -2, -1, -1, 1;
  ... (columns are A126983 and A115140)
		

Crossrefs

Cf. A057079 (row sums), A237619.

Programs

  • Mathematica
    T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[n<2, 1, T[n-1,k-1] - T[n-2,k-1] ]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def T(n,k): # T = A237621
        if (k<0 or k>n): return 0
        elif (n<2): return 1
        else: return T(n-1, k-1) - T(n-2, k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2022

Formula

T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n, k) = A057079(n).
Previous Showing 11-13 of 13 results.