cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A115146 Seventh convolution of A115140.

Original entry on oeis.org

1, -7, 14, -7, 0, 0, 0, -1, -7, -35, -154, -637, -2548, -9996, -38760, -149226, -572033, -2187185, -8351070, -31865925, -121580760, -463991880, -1771605360, -6768687870, -25880277150, -99035193894, -379300783092, -1453986335186, -5578559816632, -21422369201800
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
    
  • Mathematica
    CoefficientList[Series[(1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3) *Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3) *sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    ((1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3)*sqrt(1-4*x))/2 ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

Formula

O.g.f.: 1/c(x)^7 = P(8, x) - x*P(7, x)*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(8, x)=1-6*x+10*x^2-4*x^3 and P(7, x)=1-5*x+6*x^2-x^3.
a(n) = -C7(n-7), n>=7, with C7(n):=A000588(n+3) (seventh convolution of Catalan numbers). a(0)=1, a(1)=-7, a(2)=14, a(3)=-7, a(4)=a(5)=a(6)=0. [1, -7, 14, -7] is row n=7 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
D-finite with recurrence n*(n-7)*a(n) -2*(n-4)*(2*n-9)*a(n-1)=0. - R. J. Mathar, Sep 15 2024

A246432 Convolution inverse of A001700.

Original entry on oeis.org

1, -3, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452
Offset: 0

Views

Author

Michael Somos, Nov 14 2014

Keywords

Examples

			G.f. = 1 - 3*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 - 42*x^6 - 132*x^7 - 429*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +Sqrt(1-4*x))/2 -2*x)); // G. C. Greubel, Aug 04 2018
  • Mathematica
    CoefficientList[Series[(1 +Sqrt[1-4*x])/2 -2*x, {x, 0, 50}], x] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = if( n<2, (n==0) - 3*(n==1), - binomial(2*n - 2, n-1) / n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + sqrt(1 - 4*x + x * O(x^n))) / 2 - 2*x, n))};
    

Formula

G.f.: (1 + sqrt(1 - 4*x)) / 2 - 2*x.
G.f.: -2*x + 1 - x / (1 - x / (1 - x / ...)) (continued fraction).
a(n) = A115140(n) = A115141(n) for all n in Z unless n=1.
a(n) = -A000108(n-1) for all n>1.

A217477 Z-sequence for the Riordan triangle A111125.

Original entry on oeis.org

3, -4, 12, -40, 140, -504, 1848, -6864, 25740, -97240, 369512, -1410864, 5408312, -20801200, 80233200, -310235040, 1202160780, -4667212440, 18150270600, -70690527600, 275693057640, -1076515748880, 4208197927440, -16466861455200
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2012

Keywords

Comments

For the notion Z-sequence for a Riordan triangle (lower triangular matrix) R(n,m) see a W.Lang link under A006232, with references. The Z-sequence appears in the recurrence for any entry R(n,0), n >= 1: R(n,0) = sum(Z(m)*R(n-1,m), m=0..n-1).
The A-sequence for the Riordan triangle A111125 is (-1)^n*A115141(n).

Crossrefs

Formula

O.g.f.: (1 - (2 - c(-x))/(1 + 4*x))/(1 - c(-x)) = ((3 + 4*x) + 4*x*c(-x))/(1 + 4*x), with c(x) the o.g.f. of A000108 (Catalan).
a(0) = 3, a(n) = ((-1)^n)*4*binomial(2*n-1,n), n >= 1, (from adding the two pieces of the second o.g.f. version).
|a(n)| = A100320(n), n >0. - R. J. Mathar, Apr 22 2013
G.f.: 1 + G(0), where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
Previous Showing 11-13 of 13 results.