cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A115434 Numbers k such that the concatenation of k with k-7 gives a square.

Original entry on oeis.org

8, 16, 1337032, 2084503, 2953232, 4023943, 1330033613070195328, 4036108433661798551, 8283744867954114232, 6247320195351414276186411625291, 9452080202814205132771066881607
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			4023943_4023936 = 6343456^2.
		

Crossrefs

A115436 Numbers k such that the concatenation of k with k-9 gives a square.

Original entry on oeis.org

50, 5234, 9410, 638370, 994010, 12477933, 41829698, 99940010, 1087279650, 4492494893, 6226356365, 7765453730, 9999400010, 806057802450, 842377434050, 960398039610, 999994000010, 21338126513658, 24752544267698
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			638370_638361 = 798981^2.
		

Crossrefs

A115437 Numbers m such that the concatenation of m with m+4 gives a square.

Original entry on oeis.org

96, 205, 300, 477, 732, 1920, 3157, 52896, 120085, 427020, 8264460, 88581312, 112000885, 112917765, 143075580, 152863360, 193537077, 233788192, 266755221, 313680096, 370908477, 386568925, 440852992, 442670220
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

From Farideh Firoozbakht, Nov 26 2006: (Start)
1. a(n).(a(n)+4) = A115438^2 where "." denotes concatenation.
2. All numbers of the form f(j) = 4{j}.2.6{j-1}.70.2{j}.0 where each expression in braces denotes the multiplicity of the digit preceding the expression (e.g., "4{j}" means that the digit "4" appears j times consecutively) and where j > 0 are in the sequence because if k(j) = 6{j}.5.3{j}.4.6{j}.8 then k(j)^2 = f(j).(f(j)+4). For example, f(4) = 444426667022220, k(4) = 666653333466668, and k(4)^2 = 666653333466668^2 = f(4).(f(4)+4) = 444426667022220.444426667022224.
3. All numbers of the form f(j) = 1{j}.2.0{j+1}.8{j}.5 where j > -1 are in the sequence because if k(j) = 3{j}.4.6{j}.5.3{j+1} then k(j)^2 = f(j).(f(j)+4). For example, f(5) = 111112000000888885, k(5) = 333334666665333333, and k(5)^2 = 333334666665333333^2 = f(5).(f(5)+4) = 111112000000888885.111112000000888889. (End)

Examples

			Using "." to denote concatenation, 120085.120089 = 346533^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5],IntegerQ@Sqrt@FromDigits@Flatten[IntegerDigits/@{#,#+4}]&] (* Giorgos Kalogeropoulos, Jul 27 2021 *)

A116136 Numbers k such that k concatenated with k-3 gives the product of two numbers which differ by 4.

Original entry on oeis.org

9, 99, 183, 328, 528, 715, 999, 6099, 9999, 13224, 40495, 99999, 106755, 453288, 999999, 2066115, 2975208, 9999999, 22145328, 28027683, 99999999, 110213248, 110667555, 147928995, 178838403, 226123528, 275074575, 333052608, 378698224, 445332888, 446245635, 518348515
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with itself gives the product of two numbers which differ by 2.

Examples

			8315420899//8315420896 = 9118892968 * 9118892972, where // denotes concatenation.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116136_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(1,a,all_roots=True)):
                if a*(b+3) <= k**2-1 < a*(a+2):
                    yield (k**2-1)//a
    A116136_list = list(islice(A116136_gen(),40)) # Chai Wah Wu, Feb 19 2024

Extensions

Edited by N. J. A. Sloane, Apr 15 2007
a(29)-a(32) from Chai Wah Wu, Feb 19 2024

A116125 Numbers k such that k concatenated with k-5 gives the product of two numbers which differ by 6.

Original entry on oeis.org

7, 97, 205, 300, 477, 732, 997, 1920, 3157, 9997, 52896, 99997, 120085, 427020, 999997, 8264460, 9999997, 88581312, 99999997, 112000885, 112917765, 143075580, 152863360, 193537077, 233788192, 266755221, 313680096
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with itself gives the product of two numbers which differ by 4.

Examples

			6786111717//6786111712 = 8237785936 * 8237785942, where // denotes concatenation.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116107 Numbers k such that k concatenated with k-8 gives the product of two numbers which differ by 7.

Original entry on oeis.org

52, 63716866, 48793687600063875363014809897052, 60020753655608135708762056127156, 60446518621981165303188950156776, 71135436903815748345367595855336, 72876856643103028189103298533248
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers n such that n concatenated with n-2 gives the product of two numbers which differ by 5.

Examples

			63716866//63716864 = 79822843 * 79822848, where // denotes concatenation.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Apr 15 2007

A116163 Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 1.

Original entry on oeis.org

1, 5, 61, 65479, 84289, 106609, 225649, 275599, 453589, 1869505, 2272555, 2738291, 3221951, 1667833021, 2475062749, 2525062249, 3500010739, 9032526511, 9225507211, 1753016898055, 1860598847399, 3233666953849, 3379207972471, 5632076031055, 5823639407489
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

Also numbers k such that k concatenated with k-1 gives the product of two numbers which differ by 3.

Examples

			1 is a member since 12 = 3*4; also 10 = 2*5.
5 is a member since 56 = 7*8; also 54 = 6*9.
		

Crossrefs

Programs

  • Mathematica
    Union @@ ((y /. List@ ToRules@ Reduce[x (x+1) == 10^# y +y+1 && x>0 && 10^(#-1) <= y+1 < 10^#, {x,y}, Integers]) & /@ Range[13] /. y->{}) (* Giovanni Resta, Jul 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Apr 15 2007, Jun 27 2009
More terms from Giovanni Resta, Jul 08 2018

A116275 Numbers k such that k*(k+4) gives the concatenation of two numbers m and m-2.

Original entry on oeis.org

8872, 9009, 83352840, 99000099, 329767122286, 670232877711, 738226276371, 933006600339, 999000000999, 3779410975143113, 3872816717528065, 4250291784692548, 4278630943941865, 4372036686326817, 4749511753491300, 5250488246508697, 5627963313673180, 5721369056058132
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			99000099 * 99000103 = 98010199//98010197, where // denotes concatenation.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A116275_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(2,a,all_roots=True)):
                if a*(b+3) <= k**2-2 < a*(a+2):
                    yield k-2
    A116275_list = list(islice(A116275_gen(),30)) # Chai Wah Wu, Feb 19 2024

Extensions

a(16)-a(18) from Chai Wah Wu, Feb 19 2024

A116295 Numbers k such that k*(k+2) gives the concatenation of two numbers m and m+1.

Original entry on oeis.org

8873, 9010, 83352841, 99000100, 329767122287, 670232877712, 738226276372, 933006600340, 999000001000, 3779410975143114, 3872816717528066, 4250291784692549, 4278630943941866, 4372036686326818, 4749511753491301
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Comments

From Robert Israel, Jun 06 2018: (Start)
Numbers k such that 10^m+1 | (k+1)^2-2 where (k+1)^2 has 2*m digits.
Includes 10^i - 10^(3*i) + 10^(4*i) for all i >= 1. (End)

Examples

			99000100 * 99000102 = 98010199//98010200, where // denotes concatenation.
		

Crossrefs

Programs

  • Maple
    Res:= NULL:
    for d from 1 to 40 do
      Res:= Res, op(sort(select(t -> t^2 >= 10^(2*d-1),map(t -> rhs(op(t))-1,[msolve(x^2=2, 10^d+1)]))))
    od:
    Res; # Robert Israel, Jun 06 2018

A116106 Numbers k such that k concatenated with k-8 gives the product of two numbers which differ by 6.

Original entry on oeis.org

9, 13, 99, 103, 183, 328, 528, 715, 999, 1003, 6099, 9999, 10003, 13224, 40495, 99999, 100003, 106755, 453288, 999999, 1000003, 2066115, 2975208, 9999999, 10000003, 22145328, 28027683, 99999999, 100000003, 110213248, 110667555
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			999999999//999999991 = 999999997 * 1000000003, where // denotes concatenation.
		

Crossrefs

Previous Showing 11-20 of 24 results. Next