cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 99 results. Next

A332831 Numbers whose unsorted prime signature is neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

90, 126, 198, 234, 270, 300, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 588, 594, 600, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 980, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1176, 1188, 1200, 1206, 1242
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The sequence of terms together with their prime indices begins:
   90: {1,2,2,3}
  126: {1,2,2,4}
  198: {1,2,2,5}
  234: {1,2,2,6}
  270: {1,2,2,2,3}
  300: {1,1,2,3,3}
  306: {1,2,2,7}
  342: {1,2,2,8}
  350: {1,3,3,4}
  378: {1,2,2,2,4}
  414: {1,2,2,9}
  522: {1,2,2,10}
  525: {2,3,3,4}
  540: {1,1,2,2,2,3}
  550: {1,3,3,5}
  558: {1,2,2,11}
  588: {1,1,2,4,4}
  594: {1,2,2,2,5}
  600: {1,1,1,2,3,3}
  630: {1,2,2,3,4}
For example, the prime signature of 540 is (2,3,1), so 540 is in the sequence.
		

Crossrefs

The version for run-lengths of partitions is A332641.
The version for run-lengths of compositions is A332833.
The version for compositions is A332834.
Prime signature is A124010.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions with weakly increasing or decreasing run-lengths are A332835.
Compositions with weakly increasing run-lengths are A332836.

Programs

  • Mathematica
    Select[Range[1000],!Or[LessEqual@@Last/@FactorInteger[#],GreaterEqual@@Last/@FactorInteger[#]]&]

Formula

Intersection of A071365 and A112769.

A332641 Number of integer partitions of n whose run-lengths are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 9, 14, 22, 33, 48, 69, 96, 136, 184, 248, 330, 443, 574, 756, 970, 1252, 1595, 2040, 2558, 3236, 4041, 5054, 6256, 7781, 9547, 11782, 14394, 17614, 21423, 26083, 31501, 38158, 45930, 55299, 66262, 79477, 94803, 113214
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2020

Keywords

Comments

Also partitions whose run-lengths and negated run-lengths are not both unimodal. A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 1 through a(13) = 14 partitions:
  (3221)  (4221)  (5221)   (4331)    (4332)     (5332)
                  (32221)  (6221)    (5331)     (6331)
                  (33211)  (42221)   (7221)     (8221)
                           (322211)  (43221)    (43321)
                           (332111)  (44211)    (44311)
                                     (52221)    (53221)
                                     (322221)   (62221)
                                     (422211)   (332221)
                                     (3321111)  (333211)
                                                (422221)
                                                (442111)
                                                (522211)
                                                (3222211)
                                                (33211111)
		

Crossrefs

The complement is counted by A332745.
The Heinz numbers of these partitions are A332831.
The case of run-lengths of compositions is A332833.
Partitions whose run-lengths are weakly increasing are A100883.
Partitions whose run-lengths are weakly decreasing are A100882.
Partitions whose run-lengths are not unimodal are A332281.
Partitions whose negated run-lengths are not unimodal are A332639.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Partitions with unimodal run-lengths are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Compositions whose negation is not unimodal are A332669.
The case of run-lengths of compositions is A332833.
Compositions that are neither increasing nor decreasing are A332834.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,30}]

A332285 Number of strict integer partitions of n whose first differences (assuming the last part is zero) are unimodal.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 8, 9, 11, 13, 15, 17, 22, 25, 29, 34, 39, 42, 53, 58, 64, 75, 84, 93, 111, 122, 134, 152, 169, 184, 212, 232, 252, 287, 315, 342, 389, 419, 458, 512, 556, 602, 672, 727, 787, 870, 940, 1012, 1124, 1209, 1303, 1431, 1540, 1655, 1821
Offset: 0

Views

Author

Gus Wiseman, Feb 21 2020

Keywords

Comments

First differs from A000009 at a(8) = 5, A000009(8) = 6.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)
            (21)  (31)  (32)  (42)   (43)   (53)   (54)
                        (41)  (51)   (52)   (62)   (63)
                              (321)  (61)   (71)   (72)
                                     (421)  (521)  (81)
                                                   (432)
                                                   (531)
                                                   (621)
For example, (4,3,1,0) has first differences (-1,-2,-1), which is not unimodal, so (4,3,1) is not counted under a(8).
		

Crossrefs

The non-strict version is A332283.
The complement is counted by A332286.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Unimodal permutations are A011782.
Partitions with unimodal run-lengths are A332280.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,unimodQ[Differences[Append[#,0]]]]&]],{n,0,30}]

A332294 Number of unimodal permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 4, 1, 6, 1, 5, 4, 8, 1, 9, 1, 8, 5, 6, 1, 12, 4, 7, 9, 10, 1, 12, 1, 16, 6, 8, 5, 18, 1, 9, 7, 16, 1, 15, 1, 12, 12, 10, 1, 24, 5, 16, 8, 14, 1, 27, 6, 20, 9, 11, 1, 24, 1, 12, 15, 32, 7, 18, 1, 16, 10, 20, 1, 36, 1, 13, 16, 18, 6
Offset: 1

Views

Author

Gus Wiseman, Feb 21 2020

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(12) = 6 permutations:
  {1,1,2,3}
  {1,1,3,2}
  {1,2,3,1}
  {1,3,2,1}
  {2,3,1,1}
  {3,2,1,1}
		

Crossrefs

Dominated by A318762.
A less interesting version is A332288.
The complement is counted by A332672.
The opposite/negative version is A332741.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Partitions whose run-lengths are unimodal are A332280.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[nrmptn[n]],unimodQ]],{n,0,30}]

Formula

a(n) + A332672(n) = A318762(n).
a(n) = A332288(A181821(n)).

A332579 Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 7, 8, 10, 14, 19, 22, 30, 36, 43, 56, 69, 80, 101, 121, 141, 172, 202, 234, 282, 332, 384, 452, 527, 602, 706, 815, 929, 1077, 1236, 1403, 1615, 1842, 2082, 2379, 2702, 3044, 3458, 3908, 4388, 4963, 5589, 6252
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.

Examples

			The a(10) = 1 through a(16) = 7 partitions:
  33211  332111  3321111  333211    433211     443211      443221
                          33211111  3332111    4332111     3333211
                                    332111111  33321111    4432111
                                               3321111111  33322111
                                                           43321111
                                                           333211111
                                                           33211111111
		

Crossrefs

The complement is counted by A332577.
Not requiring the partition to cover an initial interval gives A332281.
The opposite version is A332286.
A version for compositions is A332743.
Partitions covering an initial interval of positive integers are A000009.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negated run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!unimodQ[Length/@Split[#]]&]],{n,0,30}]

A335479 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,3).

Original entry on oeis.org

52, 104, 105, 108, 116, 180, 200, 208, 209, 210, 211, 212, 216, 217, 220, 232, 233, 236, 244, 308, 328, 360, 361, 364, 372, 400, 401, 404, 408, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 432, 433, 434, 435, 436, 440, 441, 444, 456, 464, 465, 466
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   52: (1,2,3)
  104: (1,2,4)
  105: (1,2,3,1)
  108: (1,2,1,3)
  116: (1,1,2,3)
  180: (2,1,2,3)
  200: (1,3,4)
  208: (1,2,5)
  209: (1,2,4,1)
  210: (1,2,3,2)
  211: (1,2,3,1,1)
  212: (1,2,2,3)
  216: (1,2,1,4)
  217: (1,2,1,3,1)
  220: (1,2,1,1,3)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;x
    				

A332836 Number of compositions of n whose run-lengths are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 24, 40, 73, 128, 230, 399, 712, 1241, 2192, 3833, 6746, 11792, 20711, 36230, 63532, 111163, 194782, 340859, 596961, 1044748, 1829241, 3201427, 5604504, 9808976, 17170112, 30051470, 52601074, 92063629, 161140256, 282033124, 493637137, 863982135, 1512197655
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions whose run-lengths are weakly decreasing.

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (121)   (41)
                        (211)   (122)
                        (1111)  (131)
                                (212)
                                (311)
                                (1211)
                                (2111)
                                (11111)
For example, the composition (2,3,2,2,1,1,2,2,2) has run-lengths (1,1,2,2,3) so is counted under a(17).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A000041.
The case of partitions is A100883.
The case of unsorted prime signature is A304678, with dual A242031.
Permitting the run-lengths to be weakly decreasing also gives A332835.
The complement is counted by A332871.
Unimodal compositions are A001523.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Length/@Split[#]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    seq(n)={my(M=matrix(n+1, n, i, j, i==1)); for(m=1, n, M=step(M, m)); M[1,n]=0; vector(n+1, i, vecsum(M[i,]))/(n-1)} \\ Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A335470 Number of compositions of n matching the pattern (1,2,1).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 9, 24, 61, 141, 322, 713, 1543, 3289, 6907, 14353, 29604, 60640, 123522, 250645, 506808, 1022197, 2057594, 4135358, 8301139, 16648165, 33364948, 66831721, 133814251, 267850803, 536026676, 1072528081, 2145745276, 4292485526, 8586405894, 17174865820
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2020

Keywords

Comments

Also the number of (1,1,2)-matching or (2,1,1)-matching compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(4) = 1 through a(6) = 9 compositions:
  (121)  (131)   (141)
         (1121)  (1131)
         (1211)  (1212)
                 (1221)
                 (1311)
                 (2121)
                 (11121)
                 (11211)
                 (12111)
		

Crossrefs

The version for prime indices is A335446.
These compositions are ranked by A335466.
The complement A335471 is the avoiding version.
The (2,1,2)-matching version is A335472.
The version for patterns is A335509.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Compositions are counted by A011782.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by compositions are counted by A335456.
Minimal patterns avoided by a standard composition are counted by A335465.
Compositions matching (1,2,3) are counted by A335514.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x
    				

Formula

a(n > 0) = 2^(n - 1) - A335471(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A335471 Number of compositions of n avoiding the pattern (1,2,1).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 40, 67, 115, 190, 311, 505, 807, 1285, 2031, 3164, 4896, 7550, 11499, 17480, 26379, 39558, 58946, 87469, 129051, 189484, 277143, 403477, 584653, 844236, 1213743, 1738372, 2481770, 3528698, 5003364, 7070225, 9958387, 13982822, 19580613, 27333403
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2020

Keywords

Comments

Also the number of (1,1,2)-avoiding or (2,1,1)-avoiding compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (211)   (113)
                        (1111)  (122)
                                (212)
                                (221)
                                (311)
                                (1112)
                                (2111)
                                (11111)
		

Crossrefs

The version for patterns is A001710.
The version for prime indices is A335449.
These compositions are ranked by A335467.
The complement A335470 is the matching version.
The (2,1,2)-avoiding version is A335473.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Compositions are counted by A011782.
Compositions avoiding (1,2,3) are counted by A102726.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by compositions are counted by A335456.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,_,y_,_,x_,_}/;x
    				
  • PARI
    a(n)={local(Cache=Map()); my(F(n,m,k)=if(m>n, m=n); if(m==0, n==0, my(hk=[n,m,k], z); if(!mapisdefined(Cache,hk,&z), z=self()(n,m-1,k) + k*sum(i=1,n\m, self()(n-i*m, m-1, k+i)); mapput(Cache, hk, z)); z)); F(n,n,1)} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n > 0) = 2^(n - 1) - A335470(n).
a(n) = F(n,n,1) where F(n,m,k) = F(n,m-1,k) + k*(Sum_{i=1..floor(n/m)} F(n-i*m, m-1, k+i)) for m > 0 with F(0,m,k)=1 and F(n,0,k)=0 otherwise. - Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A335473 Number of compositions of n avoiding the pattern (2,1,2).

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 103, 190, 347, 630, 1134, 2028, 3585, 6291, 10950, 18944, 32574, 55692, 94618, 159758, 268147, 447502, 743097, 1227910, 2020110, 3308302, 5394617, 8757108, 14155386, 22784542, 36529813, 58343498, 92850871, 147254007, 232750871, 366671436
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2020

Keywords

Comments

Also the number of (1,2,2) or (2,2,1)-avoiding compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

The version for patterns is A001710.
The version for prime indices is A335450.
These compositions are ranked by A335469.
The (1,2,1)-avoiding version is A335471.
The complement A335472 is the matching version.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Compositions are counted by A011782.
Compositions avoiding (1,2,3) are counted by A102726.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by compositions are counted by A335456.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,_,y_,_,x_,_}/;x>y]&]],{n,0,10}]
  • PARI
    a(n)={local(Cache=Map()); my(F(n,m,k) = if(m>n, n==0, my(hk=[n,m,k], z); if(!mapisdefined(Cache,hk,&z), z=self()(n,m+1,k) + k*sum(i=1,n\m, self()(n-i*m, m+1, k+i)); mapput(Cache, hk, z)); z)); F(n,1,1)} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n > 0) = 2^(n - 1) - A335472(n).
a(n) = F(n,1,1) where F(n,m,k) = F(n,m+1,k) + k*(Sum_{i=1..floor(n/m)} F(n-i*m, m+1, k+i)) for m <= n with F(0,m,k)=1 and F(n,m,k)=0 otherwise. - Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020
Previous Showing 31-40 of 99 results. Next