cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A028859 a(n+2) = 2*a(n+1) + 2*a(n); a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968
Offset: 0

Views

Author

Keywords

Comments

Number of words of length n without adjacent 0's from the alphabet {0,1,2}. For example, a(2) counts 01,02,10,11,12,20,21,22. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 12 2001
Individually, both this sequence and A002605 are convergents to 1+sqrt(3). Mutually, both sequences are convergents to 2+sqrt(3) and 1+sqrt(3)/2. - Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Nov 04 2001 [Can someone clarify what is meant by the obscure second phrase, "Mutually..."? - M. F. Hasler, Aug 06 2018]
Add a loop at two vertices of the graph C_3=K_3. a(n) counts walks of length n+1 between these vertices. - Paul Barry, Oct 15 2004
Prefaced with a 1 as (1 + x + 3x^2 + 8x^3 + 22x^4 + ...) = 1 / (1 - x - 2x^2 - 3x^3 - 5x^4 - 8x^5 - 13x^6 - 21x^7 - ...). - Gary W. Adamson, Jul 28 2009
Equals row 2 of the array in A180165, and the INVERTi transform of A125145. - Gary W. Adamson, Aug 14 2010
Pisano period lengths: 1, 1, 3, 1, 24, 3, 48, 1, 9, 24, 10, 3, 12, 48, 24, 1, 144, 9, 180, 24, .... - R. J. Mathar, Aug 10 2012
Also the number of independent vertex sets and vertex covers in the n-centipede graph. - Eric W. Weisstein, Sep 21 2017
From Gus Wiseman, May 19 2020: (Start)
Conjecture: Also the number of length n + 1 sequences that cover an initial interval of positive integers and whose non-adjacent parts are weakly decreasing. For example, (3,2,3,1,2) has non-adjacent pairs (3,3), (3,1), (3,2), (2,1), (2,2), (3,2), all of which are weakly decreasing, so is counted under a(11). The a(1) = 1 through a(3) = 8 sequences are:
(1) (11) (111)
(12) (121)
(21) (211)
(212)
(221)
(231)
(312)
(321)
The case of compositions is A333148, or A333150 for strict compositions, or A333193 for strictly decreasing parts. A version for ordered set partitions is A332872. Standard composition numbers of these compositions are A334966. Unimodal normal sequences are A227038. See also: A001045, A001523, A032020, A100471, A100881, A115981, A329398, A332836, A332872.
(End)
Number of 2-compositions of n+1 restricted to parts 1 and 2 (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
The number of ternary strings of length n not containing 00. Complement of A186244. - R. J. Mathar, Feb 13 2022

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 73).

Crossrefs

Cf. A155020 (same sequence with term 1 prepended).
Cf. A002605.

Programs

  • Haskell
    a028859 n = a028859_list !! n
    a028859_list =
       1 : 3 : map (* 2) (zipWith (+) a028859_list (tail a028859_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Maple
    a[0]:=1:a[1]:=3:for n from 2 to 24 do a[n]:=2*a[n-1]+2*a[n-2] od: seq(a[n],n=0..24); # Emeric Deutsch
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    Table[2^(n - 1) Hypergeometric2F1[(1 - n)/2, -n/2, -n, -2], {n, 20}] (* Eric W. Weisstein, Jun 14 2017 *)
    LinearRecurrence[{2, 2}, {1, 3}, 20] (* Eric W. Weisstein, Jun 14 2017 *)
  • PARI
    a(n)=([1,3;1,1]^n*[2;1])[2,1] \\ Charles R Greathouse IV, Mar 27 2012
    
  • PARI
    A028859(n)=([1,1]*[2,2;1,0]^n)[1] \\ M. F. Hasler, Aug 06 2018

Formula

a(n) = a(n-1) + A052945(n) = A002605(n) + A002605(n-1).
G.f.: -(x+1)/(2*x^2+2*x-1).
a(n) = [(1+sqrt(3))^(n+2)-(1-sqrt(3))^(n+2)]/(4*sqrt(3)). - Emeric Deutsch, Feb 01 2005
If p[i]=fibonacci(i+1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n) = 3^n - A186244(n). - Toby Gottfried, Mar 07 2013
E.g.f.: exp(x)*(cosh(sqrt(3)*x) + 2*sinh(sqrt(3)*x)/sqrt(3)). - Stefano Spezia, Mar 02 2024

Extensions

Definition completed by M. F. Hasler, Aug 06 2018

A332834 Number of compositions of n that are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 36, 88, 199, 432, 914, 1900, 3896, 7926, 16036, 32311, 64944, 130308, 261166, 523040, 1046996, 2095152, 4191796, 8385466, 16773303, 33549564, 67102848, 134210298, 268426328, 536859712, 1073728142, 2147466956, 4294947014, 8589909976
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(4) = 1 through a(6) = 14 compositions:
  (121)  (131)   (132)
         (212)   (141)
         (1121)  (213)
         (1211)  (231)
                 (312)
                 (1131)
                 (1212)
                 (1221)
                 (1311)
                 (2112)
                 (2121)
                 (11121)
                 (11211)
                 (12111)
		

Crossrefs

The version for unsorted prime signature is A332831.
The version for run-lengths of compositions is A332833.
The complement appears to be counted by A329398.
Unimodal compositions are A001523.
Compositions that are not unimodal are A115981.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions with weakly increasing or decreasing run-lengths are A332835.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Or[LessEqual@@#,GreaterEqual@@#]&]],{n,0,10}]
  • PARI
    a(n)={if(n==0, 0, 2^(n-1) - 2*numbpart(n) + numdiv(n))} \\ Andrew Howroyd, Dec 30 2020

Formula

a(n) = 2^(n - 1) - 2 * A000041(n) + A000005(n).

A332833 Number of compositions of n whose run-lengths are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 8, 27, 75, 185, 441, 1025, 2276, 4985, 10753, 22863, 48142, 100583, 208663, 430563, 884407, 1809546, 3690632, 7506774, 15233198, 30851271, 62377004, 125934437, 253936064, 511491634, 1029318958, 2069728850, 4158873540, 8351730223, 16762945432
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 3 and a(7) = 8 compositions:
  (1221)   (2113)
  (2112)   (3112)
  (11211)  (11311)
           (12112)
           (21112)
           (21121)
           (111211)
           (112111)
		

Crossrefs

The case of partitions is A332641.
The version for unsorted prime signature is A332831.
The version for the compositions themselves (not run-lengths) is A332834.
The complement is counted by A332835.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions whose run-lengths are not unimodal are A332727.
Partitions with weakly increasing or weakly decreasing run-lengths: A332745.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,10}]

Formula

a(n) = 2^(n - 1) - 2 * A332836(n) + A329738(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332835 Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 29, 56, 101, 181, 327, 583, 1023, 1820, 3207, 5631, 9905, 17394, 30489, 53481, 93725, 164169, 287606, 503672, 881834, 1544018, 2703161, 4731860, 8283291, 14499392, 25379278, 44422866, 77754798, 136093756, 238204369, 416923752, 729728031
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 29 compositions:
  (6)    (141)  (213)   (1113)  (21111)
  (51)   (114)  (132)   (222)   (12111)
  (15)   (33)   (123)   (2211)  (11121)
  (42)   (321)  (3111)  (2121)  (11112)
  (24)   (312)  (1311)  (1212)  (111111)
  (411)  (231)  (1131)  (1122)
Missing are: (2112), (1221), (11211).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A329398.
Compositions with equal run-lengths are A329738.
The case of partitions is A332745.
The version for unsorted prime signature is the complement of A332831.
The complement is counted by A332833.
Unimodal compositions are A001523.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Compositions that are not unimodal are A115981.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.
Neither weakly increasing nor weakly decreasing compositions are A332834.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,20}]

Formula

a(n) = 2 * A332836(n) - A329738(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332726 Number of compositions of n whose run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 61, 120, 228, 438, 836, 1580, 2976, 5596, 10440, 19444, 36099, 66784, 123215, 226846, 416502, 763255, 1395952, 2548444, 4644578, 8452200, 15358445, 27871024, 50514295, 91446810, 165365589, 298730375, 539127705, 972099072, 1751284617, 3152475368
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The only composition of 6 whose run-lengths are not unimodal is (1,1,2,1,1).
		

Crossrefs

Looking at the composition itself (not run-lengths) gives A001523.
The case of partitions is A332280, with complement counted by A332281.
The complement is counted by A332727.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Compositions with normal run-lengths are A329766.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283, with complement A332284, with Heinz numbers A332287.
Compositions whose negated run-lengths are unimodal are A332578.
Compositions whose negated run-lengths are not unimodal are A332669.
Compositions whose run-lengths are weakly increasing are A332836.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    desc(M, m)={my(n=matsize(M)[1]); while(m>1, m--; M=step(M,m)); vector(n, i, vecsum(M[i,]))/(#M-1)}
    seq(n)={my(M=matrix(n+1, n+1, i, j, i==1), S=M[,1]~); for(m=1, n, my(D=M); M=step(M, m); D=(M-D)[m+1..n+1,1..n-m+2]; S+=concat(vector(m), desc(D,m))); S} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) + A332727(n) = 2^(n - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A332831 Numbers whose unsorted prime signature is neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

90, 126, 198, 234, 270, 300, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 588, 594, 600, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 980, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1176, 1188, 1200, 1206, 1242
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The sequence of terms together with their prime indices begins:
   90: {1,2,2,3}
  126: {1,2,2,4}
  198: {1,2,2,5}
  234: {1,2,2,6}
  270: {1,2,2,2,3}
  300: {1,1,2,3,3}
  306: {1,2,2,7}
  342: {1,2,2,8}
  350: {1,3,3,4}
  378: {1,2,2,2,4}
  414: {1,2,2,9}
  522: {1,2,2,10}
  525: {2,3,3,4}
  540: {1,1,2,2,2,3}
  550: {1,3,3,5}
  558: {1,2,2,11}
  588: {1,1,2,4,4}
  594: {1,2,2,2,5}
  600: {1,1,1,2,3,3}
  630: {1,2,2,3,4}
For example, the prime signature of 540 is (2,3,1), so 540 is in the sequence.
		

Crossrefs

The version for run-lengths of partitions is A332641.
The version for run-lengths of compositions is A332833.
The version for compositions is A332834.
Prime signature is A124010.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions with weakly increasing or decreasing run-lengths are A332835.
Compositions with weakly increasing run-lengths are A332836.

Programs

  • Mathematica
    Select[Range[1000],!Or[LessEqual@@Last/@FactorInteger[#],GreaterEqual@@Last/@FactorInteger[#]]&]

Formula

Intersection of A071365 and A112769.

A332727 Number of compositions of n whose run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 8, 28, 74, 188, 468, 1120, 2596, 5944, 13324, 29437, 64288, 138929, 297442, 632074, 1333897, 2798352, 5840164, 12132638, 25102232, 51750419, 106346704, 217921161, 445424102, 908376235, 1848753273, 3755839591, 7617835520, 15428584567, 31207263000
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 1 through a(8) = 8 compositions:
  (11211)  (11311)   (11411)
           (111211)  (111311)
           (112111)  (112112)
                     (113111)
                     (211211)
                     (1111211)
                     (1112111)
                     (1121111)
		

Crossrefs

Looking at the composition itself (not its run-lengths) gives A115981.
The case of partitions is A332281, with complement counted by A332280.
The complement is counted by A332726.
Unimodal compositions are A001523.
Non-unimodal normal sequences are A328509.
Compositions with normal run-lengths are A329766.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283, with complement A332284, with Heinz numbers A332287.
Compositions whose negation is not unimodal are A332669.
Compositions whose run-lengths are weakly increasing are A332836.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,10}]

Formula

a(n) + A332726(n) = 2^(n - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A333191 Number of compositions of n whose run-lengths are either strictly increasing or strictly decreasing.

Original entry on oeis.org

1, 1, 2, 2, 5, 8, 10, 18, 24, 29, 44, 60, 68, 100, 130, 148, 201, 256, 310, 396, 478, 582, 736, 898, 1068, 1301, 1594, 1902, 2288, 2750, 3262, 3910, 4638, 5510, 6538, 7686, 9069, 10670, 12560, 14728, 17170, 20090, 23462, 27292, 31710, 36878, 42704, 49430
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(7) = 18 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (113)    (33)      (115)
                    (112)   (122)    (114)     (133)
                    (211)   (221)    (222)     (223)
                    (1111)  (311)    (411)     (322)
                            (1112)   (1113)    (331)
                            (2111)   (3111)    (511)
                            (11111)  (11112)   (1114)
                                     (21111)   (1222)
                                     (111111)  (2221)
                                               (4111)
                                               (11113)
                                               (11122)
                                               (22111)
                                               (31111)
                                               (111112)
                                               (211111)
                                               (1111111)
		

Crossrefs

The non-strict version is A332835.
The case of partitions is A333190.
Unimodal compositions are A001523.
Strict compositions are A032020.
Partitions with distinct run-lengths are A098859.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions whose run-lengths are unimodal or co-unimodal are A332746.
Compositions whose run-lengths are neither incr. nor decr. are A332833.
Compositions that are neither increasing nor decreasing are A332834.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are strictly incr. or strictly decr. are A333147.
Compositions with strictly increasing run-lengths are A333192.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Less@@Length/@Split[#],Greater@@Length/@Split[#]]&]],{n,0,15}]

Formula

a(n > 0) = 2*A333192(n) - A000005(n).

Extensions

Terms a(26) and beyond from Giovanni Resta, May 19 2020

A333192 Number of compositions of n with strictly increasing run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 16, 24, 31, 37, 51, 67, 76, 103, 129, 158, 199, 242, 293, 370, 450, 538, 652, 799, 953, 1147, 1376, 1635, 1956, 2322, 2757, 3271, 3845, 4539, 5336, 6282, 7366, 8589, 10046, 11735, 13647, 15858, 18442, 21354, 24716, 28630, 32985
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(8) = 14 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (122)    (33)      (133)      (44)
                    (211)   (311)    (222)     (322)      (233)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (1222)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (11222)
                                               (211111)   (41111)
                                               (1111111)  (122111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, the composition (1,2,2,1,1,1) has run-lengths (1,2,3), so is counted under a(8).
		

Crossrefs

The case of partitions is A100471.
The non-strict version is A332836.
Strictly increasing compositions are A000009.
Unimodal compositions are A001523.
Strict compositions are A032020.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions with strictly increasing or decreasing run-lengths are A333191.
Numbers with strictly increasing prime multiplicities are A334965.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Length/@Split[#]&]],{n,0,15}]
    b[n_, lst_, v_] := b[n, lst, v] = If[n == 0, 1, If[n <= lst, 0, Sum[If[k == v, 0, b[n - k pz, pz, k]], {pz, lst + 1, n}, {k, Floor[n/pz]}]]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 50] (* Giovanni Resta, May 18 2020 *)

Extensions

Terms a(26) and beyond from Giovanni Resta, May 18 2020

A333193 Number of compositions of n whose non-adjacent parts are strictly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 71, 93, 122, 158, 204, 260, 332, 419, 528, 661, 825, 1023, 1267, 1560, 1916, 2344, 2860, 3476, 4217, 5097, 6147, 7393, 8872, 10618, 12685, 15115, 17977, 21336, 25276, 29882, 35271, 41551, 48872, 57385, 67277, 78745, 92040
Offset: 0

Views

Author

Gus Wiseman, May 18 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 15 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)     (7)
       (11)  (12)  (13)   (14)   (15)    (16)
             (21)  (22)   (23)   (24)    (25)
                   (31)   (32)   (33)    (34)
                   (211)  (41)   (42)    (43)
                          (221)  (51)    (52)
                          (311)  (231)   (61)
                                 (312)   (241)
                                 (321)   (322)
                                 (411)   (331)
                                 (2211)  (412)
                                         (421)
                                         (511)
                                         (2311)
                                         (3211)
For example, (2,3,1,2) is not such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), not all of which are strictly decreasing, while (2,4,1,1) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,1), (4,1), all of which are strictly decreasing.
		

Crossrefs

A version for ordered set partitions is A332872.
The case of strict compositions is A333150.
The case of normal sequences appears to be A001045.
Unimodal compositions are A001523, with strict case A072706.
Strict compositions are A032020.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Compositions with weakly decreasing non-adjacent parts are A333148.
Compositions with strictly increasing run-lengths are A333192.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>=x]&]],{n,0,15}]
  • PARI
    \\ p is all, q is those ending in an unreversed singleton.
    seq(n)={my(q=O(x*x^n), p=1+q); for(k=1, n, [p,q] = [p*(1 + x^k + x^(2*k)) + q*x^k, q + p*x^k] ); Vec(p)} \\ Andrew Howroyd, Apr 17 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Apr 17 2021
Showing 1-10 of 12 results. Next