cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A334965 Numbers with strictly increasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 151, 157, 162, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, May 18 2020

Keywords

Comments

First differs from A329131 in lacking 150.
Also numbers whose unsorted prime signature is strictly increasing.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            25: {3,3}           64: {1,1,1,1,1,1}
    2: {1}           27: {2,2,2}         67: {19}
    3: {2}           29: {10}            71: {20}
    4: {1,1}         31: {11}            73: {21}
    5: {3}           32: {1,1,1,1,1}     75: {2,3,3}
    7: {4}           37: {12}            79: {22}
    8: {1,1,1}       41: {13}            81: {2,2,2,2}
    9: {2,2}         43: {14}            83: {23}
   11: {5}           47: {15}            89: {24}
   13: {6}           49: {4,4}           97: {25}
   16: {1,1,1,1}     50: {1,3,3}         98: {1,4,4}
   17: {7}           53: {16}           101: {26}
   18: {1,2,2}       54: {1,2,2,2}      103: {27}
   19: {8}           59: {17}           107: {28}
   23: {9}           61: {18}           108: {1,1,2,2,2}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
The weakly decreasing version is A242031.
The weakly increasing version is A304678.
The strictly decreasing version is A304686.
Compositions with strictly increasing or decreasing run-lengths are A333191.

Programs

  • Mathematica
    Select[Range[100],Less@@Last/@FactorInteger[#]&]

A218004 Number of equivalence classes of compositions of n where two compositions a,b are considered equivalent if the summands of a can be permuted into the summands of b with an even number of transpositions.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 19, 27, 37, 51, 67, 91, 118, 156, 202, 262, 334, 430, 543, 690, 867, 1090, 1358, 1696, 2099, 2600, 3201, 3939, 4820, 5899, 7181, 8738, 10590, 12821, 15467, 18644, 22396, 26878, 32166, 38450, 45842, 54599, 64870, 76990, 91181, 107861, 127343, 150182, 176788, 207883
Offset: 0

Views

Author

Geoffrey Critzer, Oct 17 2012

Keywords

Comments

a(n) = A000041(n) + A000009(n) - 1 where A000041 is the partition numbers and A000009 is the number of partitions into distinct parts.
From Gus Wiseman, Oct 14 2020: (Start)
Also the number of compositions of n that are either strictly increasing or weakly decreasing. For example, the a(1) = 1 through a(6) = 14 compositions are:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(211) (41) (42)
(1111) (221) (51)
(311) (123)
(2111) (222)
(11111) (321)
(411)
(2211)
(3111)
(21111)
(111111)
A007997 counts only compositions of length 3.
A329398 appears to be the weakly increasing version.
A333147 is the strictly decreasing version.
A333255 union A114994 ranks these compositions using standard compositions (A066099).
A337482 counts the complement.
(End)

Examples

			a(4) = 6 because the 6 classes can be represented by: 4, 3+1, 1+3, 2+2, 2+1+1, 1+1+1+1.
		

Crossrefs

A000009 counts strictly increasing compositions, ranked by A333255.
A000041 counts weakly decreasing compositions, ranked by A114994.
A001523 counts unimodal compositions (strict: A072706).
A007318 and A097805 count compositions by length.
A032020 counts strict compositions, ranked by A233564.
A332834 counts compositions not increasing nor decreasing (strict: A333149).

Programs

  • Mathematica
    nn=50;p=CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x];d= CoefficientList[Series[Sum[Product[x^i/(1-x^i),{i,1,k}],{k,0,nn}],{x,0,nn}],x];p+d-1
    (* second program *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@#||GreaterEqual@@#&]],{n,0,15}] (* Gus Wiseman, Oct 14 2020 *)

A333147 Number of compositions of n that are either strictly increasing or strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 7, 9, 11, 15, 19, 23, 29, 35, 43, 53, 63, 75, 91, 107, 127, 151, 177, 207, 243, 283, 329, 383, 443, 511, 591, 679, 779, 895, 1023, 1169, 1335, 1519, 1727, 1963, 2225, 2519, 2851, 3219, 3631, 4095, 4607, 5179, 5819, 6527, 7315, 8193, 9163
Offset: 0

Views

Author

Gus Wiseman, May 16 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(9) = 15 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)    (1,7)    (1,8)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)    (2,6)    (2,7)
                          (3,2)  (4,2)    (3,4)    (3,5)    (3,6)
                          (4,1)  (5,1)    (4,3)    (5,3)    (4,5)
                                 (1,2,3)  (5,2)    (6,2)    (5,4)
                                 (3,2,1)  (6,1)    (7,1)    (6,3)
                                          (1,2,4)  (1,2,5)  (7,2)
                                          (4,2,1)  (1,3,4)  (8,1)
                                                   (4,3,1)  (1,2,6)
                                                   (5,2,1)  (1,3,5)
                                                            (2,3,4)
                                                            (4,3,2)
                                                            (5,3,1)
                                                            (6,2,1)
		

Crossrefs

Strict partitions are A000009.
Unimodal compositions are A001523 (strict: A072706).
Strict compositions are A032020.
The non-strict version appears to be A329398.
Partitions with incr. or decr. run-lengths are A332745 (strict: A333190).
Compositions with incr. or decr. run-lengths are A332835 (strict: A333191).
The complement is counted by A333149 (non-strict: A332834).

Programs

  • Mathematica
    Table[2*PartitionsQ[n]-1,{n,0,30}]

Formula

a(n) = 2*A000009(n) - 1.

A333149 Number of strict compositions of n that are neither increasing nor decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 4, 8, 12, 38, 42, 72, 98, 150, 298, 372, 542, 760, 1070, 1428, 2600, 3120, 4550, 6050, 8478, 10976, 15220, 23872, 29950, 41276, 55062, 74096, 97148, 129786, 167256, 256070, 314454, 429338, 556364, 749266, 955746, 1275016, 1618054
Offset: 0

Views

Author

Gus Wiseman, May 16 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. It is strict if there are no repeated parts.

Examples

			The a(6) = 4 through a(9) = 12 compositions:
  (1,3,2)  (1,4,2)  (1,4,3)  (1,5,3)
  (2,1,3)  (2,1,4)  (1,5,2)  (1,6,2)
  (2,3,1)  (2,4,1)  (2,1,5)  (2,1,6)
  (3,1,2)  (4,1,2)  (2,5,1)  (2,4,3)
                    (3,1,4)  (2,6,1)
                    (3,4,1)  (3,1,5)
                    (4,1,3)  (3,2,4)
                    (5,1,2)  (3,4,2)
                             (3,5,1)
                             (4,2,3)
                             (5,1,3)
                             (6,1,2)
		

Crossrefs

The non-strict case is A332834.
The complement is counted by A333147.
Strict partitions are A000009.
Strict compositions are A032020.
Non-unimodal strict compositions are A072707.
Strict partitions with increasing or decreasing run-lengths are A333190.
Strict compositions with increasing or decreasing run-lengths are A333191.
Unimodal compositions are A001523, with strict case A072706.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!Greater@@#&&!Less@@#&]],{n,0,10}]

Formula

a(n) = A032020(n) - 2*A000009(n) + 1.

A333190 Number of integer partitions of n whose run-lengths are either strictly increasing or strictly decreasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 15, 21, 26, 29, 39, 49, 50, 68, 80, 92, 109, 129, 142, 181, 201, 227, 262, 317, 343, 404, 456, 516, 589, 677, 742, 870, 949, 1077, 1207, 1385, 1510, 1704, 1895, 2123, 2352, 2649, 2877, 3261, 3571, 3966, 4363, 4873, 5300, 5914, 6466
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The non-strict version is A332745.
The generalization to compositions is A333191.
Partitions with distinct run-lengths are A098859.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Partitions with unimodal run-lengths are A332280.
Partitions whose run-lengths are not increasing nor decreasing are A332641.
Compositions whose run-lengths are unimodal or co-unimodal are A332746.
Compositions that are neither increasing nor decreasing are A332834.
Strictly increasing or strictly decreasing compositions are A333147.
Compositions with strictly increasing run-lengths are A333192.
Numbers with strictly increasing prime multiplicities are A334965.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Less@@Length/@Split[#],Greater@@Length/@Split[#]]&]],{n,0,30}]

A333192 Number of compositions of n with strictly increasing run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 16, 24, 31, 37, 51, 67, 76, 103, 129, 158, 199, 242, 293, 370, 450, 538, 652, 799, 953, 1147, 1376, 1635, 1956, 2322, 2757, 3271, 3845, 4539, 5336, 6282, 7366, 8589, 10046, 11735, 13647, 15858, 18442, 21354, 24716, 28630, 32985
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(8) = 14 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (122)    (33)      (133)      (44)
                    (211)   (311)    (222)     (322)      (233)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (1222)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (11222)
                                               (211111)   (41111)
                                               (1111111)  (122111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, the composition (1,2,2,1,1,1) has run-lengths (1,2,3), so is counted under a(8).
		

Crossrefs

The case of partitions is A100471.
The non-strict version is A332836.
Strictly increasing compositions are A000009.
Unimodal compositions are A001523.
Strict compositions are A032020.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions with strictly increasing or decreasing run-lengths are A333191.
Numbers with strictly increasing prime multiplicities are A334965.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Length/@Split[#]&]],{n,0,15}]
    b[n_, lst_, v_] := b[n, lst, v] = If[n == 0, 1, If[n <= lst, 0, Sum[If[k == v, 0, b[n - k pz, pz, k]], {pz, lst + 1, n}, {k, Floor[n/pz]}]]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 50] (* Giovanni Resta, May 18 2020 *)

Extensions

Terms a(26) and beyond from Giovanni Resta, May 18 2020

A333193 Number of compositions of n whose non-adjacent parts are strictly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 71, 93, 122, 158, 204, 260, 332, 419, 528, 661, 825, 1023, 1267, 1560, 1916, 2344, 2860, 3476, 4217, 5097, 6147, 7393, 8872, 10618, 12685, 15115, 17977, 21336, 25276, 29882, 35271, 41551, 48872, 57385, 67277, 78745, 92040
Offset: 0

Views

Author

Gus Wiseman, May 18 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 15 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)     (7)
       (11)  (12)  (13)   (14)   (15)    (16)
             (21)  (22)   (23)   (24)    (25)
                   (31)   (32)   (33)    (34)
                   (211)  (41)   (42)    (43)
                          (221)  (51)    (52)
                          (311)  (231)   (61)
                                 (312)   (241)
                                 (321)   (322)
                                 (411)   (331)
                                 (2211)  (412)
                                         (421)
                                         (511)
                                         (2311)
                                         (3211)
For example, (2,3,1,2) is not such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), not all of which are strictly decreasing, while (2,4,1,1) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,1), (4,1), all of which are strictly decreasing.
		

Crossrefs

A version for ordered set partitions is A332872.
The case of strict compositions is A333150.
The case of normal sequences appears to be A001045.
Unimodal compositions are A001523, with strict case A072706.
Strict compositions are A032020.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Compositions with weakly decreasing non-adjacent parts are A333148.
Compositions with strictly increasing run-lengths are A333192.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>=x]&]],{n,0,15}]
  • PARI
    \\ p is all, q is those ending in an unreversed singleton.
    seq(n)={my(q=O(x*x^n), p=1+q); for(k=1, n, [p,q] = [p*(1 + x^k + x^(2*k)) + q*x^k, q + p*x^k] ); Vec(p)} \\ Andrew Howroyd, Apr 17 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Apr 17 2021
Showing 1-7 of 7 results.