cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A332639 Number of integer partitions of n whose negated run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 10, 17, 25, 36, 51, 75, 102, 143, 192, 259, 346, 462, 599, 786, 1014, 1309, 1670, 2133, 2686, 3402, 4258, 5325, 6623, 8226, 10134, 12504, 15328, 18779, 22878, 27870, 33762, 40916, 49349, 59457, 71394, 85679, 102394
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 1 through a(13) = 10 partitions:
  (3221)  (4221)  (5221)   (4331)    (4332)    (5332)
                  (32221)  (6221)    (5331)    (6331)
                           (42221)   (7221)    (8221)
                           (322211)  (43221)   (43321)
                                     (52221)   (53221)
                                     (322221)  (62221)
                                     (422211)  (332221)
                                               (422221)
                                               (522211)
                                               (3222211)
		

Crossrefs

The version for normal sequences is A328509.
The non-negated complement is A332280.
The non-negated version is A332281.
The complement is counted by A332638.
The case that is not unimodal either is A332640.
The Heinz numbers of these partitions are A332642.
The generalization to run-lengths of compositions is A332727.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332638 Number of integer partitions of n whose negated run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 52, 70, 91, 118, 151, 195, 246, 310, 388, 484, 600, 743, 909, 1113, 1359, 1650, 1996, 2409, 2895, 3471, 4156, 4947, 5885, 6985, 8260, 9751, 11503, 13511, 15857, 18559, 21705, 25304, 29499, 34259, 39785, 46101, 53360, 61594
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 21 partitions:
  (8)     (44)     (2222)
  (53)    (332)    (22211)
  (62)    (422)    (32111)
  (71)    (431)    (221111)
  (521)   (3311)   (311111)
  (611)   (4211)   (2111111)
  (5111)  (41111)  (11111111)
Missing from this list is only (3221).
		

Crossrefs

The non-negated version is A332280.
The complement is counted by A332639.
The Heinz numbers of partitions not in this class are A332642.
The case of 0-appended differences (instead of run-lengths) is A332728.
Unimodal compositions are A001523.
Partitions whose run lengths are not unimodal are A332281.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332833 Number of compositions of n whose run-lengths are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 8, 27, 75, 185, 441, 1025, 2276, 4985, 10753, 22863, 48142, 100583, 208663, 430563, 884407, 1809546, 3690632, 7506774, 15233198, 30851271, 62377004, 125934437, 253936064, 511491634, 1029318958, 2069728850, 4158873540, 8351730223, 16762945432
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 3 and a(7) = 8 compositions:
  (1221)   (2113)
  (2112)   (3112)
  (11211)  (11311)
           (12112)
           (21112)
           (21121)
           (111211)
           (112111)
		

Crossrefs

The case of partitions is A332641.
The version for unsorted prime signature is A332831.
The version for the compositions themselves (not run-lengths) is A332834.
The complement is counted by A332835.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions whose run-lengths are not unimodal are A332727.
Partitions with weakly increasing or weakly decreasing run-lengths: A332745.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,10}]

Formula

a(n) = 2^(n - 1) - 2 * A332836(n) + A329738(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332745 Number of integer partitions of n whose run-lengths are either weakly increasing or weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 39, 51, 68, 87, 113, 143, 183, 228, 289, 354, 443, 544, 672, 812, 1001, 1202, 1466, 1758, 2123, 2525, 3046, 3606, 4308, 5089, 6054, 7102, 8430, 9855, 11621, 13571, 15915, 18500, 21673, 25103, 29245, 33835, 39296, 45277, 52470
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

Also partitions whose run-lengths and negated run-lengths are both unimodal.

Examples

			The a(8) = 21 partitions are:
  (8)     (44)     (2222)
  (53)    (332)    (22211)
  (62)    (422)    (32111)
  (71)    (431)    (221111)
  (521)   (3311)   (311111)
  (611)   (4211)   (2111111)
  (5111)  (41111)  (11111111)
Missing from this list is only (3221).
		

Crossrefs

The complement is counted by A332641.
The Heinz numbers of partitions not in this class are A332831.
The case of run-lengths of compositions is A332835.
Only weakly decreasing is A100882.
Only weakly increasing is A100883.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Partitions with unimodal run-lengths are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Compositions with unimodal run-lengths are A332726.
Compositions that are neither weakly increasing nor decreasing are A332834.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,30}]

A332726 Number of compositions of n whose run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 61, 120, 228, 438, 836, 1580, 2976, 5596, 10440, 19444, 36099, 66784, 123215, 226846, 416502, 763255, 1395952, 2548444, 4644578, 8452200, 15358445, 27871024, 50514295, 91446810, 165365589, 298730375, 539127705, 972099072, 1751284617, 3152475368
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The only composition of 6 whose run-lengths are not unimodal is (1,1,2,1,1).
		

Crossrefs

Looking at the composition itself (not run-lengths) gives A001523.
The case of partitions is A332280, with complement counted by A332281.
The complement is counted by A332727.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Compositions with normal run-lengths are A329766.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283, with complement A332284, with Heinz numbers A332287.
Compositions whose negated run-lengths are unimodal are A332578.
Compositions whose negated run-lengths are not unimodal are A332669.
Compositions whose run-lengths are weakly increasing are A332836.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    desc(M, m)={my(n=matsize(M)[1]); while(m>1, m--; M=step(M,m)); vector(n, i, vecsum(M[i,]))/(#M-1)}
    seq(n)={my(M=matrix(n+1, n+1, i, j, i==1), S=M[,1]~); for(m=1, n, my(D=M); M=step(M, m); D=(M-D)[m+1..n+1,1..n-m+2]; S+=concat(vector(m), desc(D,m))); S} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) + A332727(n) = 2^(n - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A332640 Number of integer partitions of n such that neither the run-lengths nor the negated run-lengths are unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 12, 17, 29, 44, 66, 92, 138, 187, 266, 359, 492, 649, 877, 1140, 1503, 1938, 2517, 3202, 4111, 5175, 6563, 8209, 10297, 12763, 15898, 19568, 24152, 29575, 36249, 44090, 53737, 65022, 78752, 94873, 114294
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(14) = 1 through a(18) = 12 partitions:
  (433211)  (533211)   (443221)    (544211)     (544311)
            (4332111)  (633211)    (733211)     (553221)
                       (5332111)   (4333211)    (644211)
                       (43321111)  (6332111)    (833211)
                                   (53321111)   (4432221)
                                   (433211111)  (5333211)
                                                (5442111)
                                                (7332111)
                                                (43332111)
                                                (63321111)
                                                (533211111)
                                                (4332111111)
For example, the partition (4,3,3,2,1,1) has run-lengths (1,2,1,2), so is counted under a(14).
		

Crossrefs

Looking only at the original run-lengths gives A332281.
Looking only at the negated run-lengths gives A332639.
The Heinz numbers of these partitions are A332643.
The complement is counted by A332746.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Partitions with unimodal run-lengths are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Run-lengths and negated run-lengths are not both unimodal: A332641.
Compositions whose negation is not unimodal are A332669.
Run-lengths and negated run-lengths are both unimodal: A332745.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&&!unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332641 Number of integer partitions of n whose run-lengths are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 9, 14, 22, 33, 48, 69, 96, 136, 184, 248, 330, 443, 574, 756, 970, 1252, 1595, 2040, 2558, 3236, 4041, 5054, 6256, 7781, 9547, 11782, 14394, 17614, 21423, 26083, 31501, 38158, 45930, 55299, 66262, 79477, 94803, 113214
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2020

Keywords

Comments

Also partitions whose run-lengths and negated run-lengths are not both unimodal. A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 1 through a(13) = 14 partitions:
  (3221)  (4221)  (5221)   (4331)    (4332)     (5332)
                  (32221)  (6221)    (5331)     (6331)
                  (33211)  (42221)   (7221)     (8221)
                           (322211)  (43221)    (43321)
                           (332111)  (44211)    (44311)
                                     (52221)    (53221)
                                     (322221)   (62221)
                                     (422211)   (332221)
                                     (3321111)  (333211)
                                                (422221)
                                                (442111)
                                                (522211)
                                                (3222211)
                                                (33211111)
		

Crossrefs

The complement is counted by A332745.
The Heinz numbers of these partitions are A332831.
The case of run-lengths of compositions is A332833.
Partitions whose run-lengths are weakly increasing are A100883.
Partitions whose run-lengths are weakly decreasing are A100882.
Partitions whose run-lengths are not unimodal are A332281.
Partitions whose negated run-lengths are not unimodal are A332639.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Partitions with unimodal run-lengths are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Compositions whose negation is not unimodal are A332669.
The case of run-lengths of compositions is A332833.
Compositions that are neither increasing nor decreasing are A332834.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,30}]

A332579 Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 7, 8, 10, 14, 19, 22, 30, 36, 43, 56, 69, 80, 101, 121, 141, 172, 202, 234, 282, 332, 384, 452, 527, 602, 706, 815, 929, 1077, 1236, 1403, 1615, 1842, 2082, 2379, 2702, 3044, 3458, 3908, 4388, 4963, 5589, 6252
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.

Examples

			The a(10) = 1 through a(16) = 7 partitions:
  33211  332111  3321111  333211    433211     443211      443221
                          33211111  3332111    4332111     3333211
                                    332111111  33321111    4432111
                                               3321111111  33322111
                                                           43321111
                                                           333211111
                                                           33211111111
		

Crossrefs

The complement is counted by A332577.
Not requiring the partition to cover an initial interval gives A332281.
The opposite version is A332286.
A version for compositions is A332743.
Partitions covering an initial interval of positive integers are A000009.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negated run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!unimodQ[Length/@Split[#]]&]],{n,0,30}]

A332836 Number of compositions of n whose run-lengths are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 24, 40, 73, 128, 230, 399, 712, 1241, 2192, 3833, 6746, 11792, 20711, 36230, 63532, 111163, 194782, 340859, 596961, 1044748, 1829241, 3201427, 5604504, 9808976, 17170112, 30051470, 52601074, 92063629, 161140256, 282033124, 493637137, 863982135, 1512197655
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions whose run-lengths are weakly decreasing.

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (121)   (41)
                        (211)   (122)
                        (1111)  (131)
                                (212)
                                (311)
                                (1211)
                                (2111)
                                (11111)
For example, the composition (2,3,2,2,1,1,2,2,2) has run-lengths (1,1,2,2,3) so is counted under a(17).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A000041.
The case of partitions is A100883.
The case of unsorted prime signature is A304678, with dual A242031.
Permitting the run-lengths to be weakly decreasing also gives A332835.
The complement is counted by A332871.
Unimodal compositions are A001523.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Length/@Split[#]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    seq(n)={my(M=matrix(n+1, n, i, j, i==1)); for(m=1, n, M=step(M, m)); M[1,n]=0; vector(n+1, i, vecsum(M[i,]))/(n-1)} \\ Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 22, 340, 3954, 44716, 536858, 7056252, 102140970, 1622267196, 28090317226, 526854073564, 10641328363722, 230283141084220, 5315654511587498, 130370766447282204, 3385534661270087178, 92801587312544823804, 2677687796221222845802, 81124824998424994578652
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negative is unimodal.

Examples

			The a(4) = 22 sequences:
  (1,2,1,2)  (2,3,1,3)
  (1,2,1,3)  (2,3,1,4)
  (1,3,1,2)  (2,4,1,3)
  (1,3,2,3)  (3,1,2,1)
  (1,3,2,4)  (3,1,3,2)
  (1,4,2,3)  (3,1,4,2)
  (2,1,2,1)  (3,2,3,1)
  (2,1,3,1)  (3,2,4,1)
  (2,1,3,2)  (3,4,1,2)
  (2,1,4,3)  (4,1,3,2)
  (2,3,1,2)  (4,2,3,1)
		

Crossrefs

Not requiring non-co-unimodality gives A328509.
Not requiring non-unimodality also gives A328509.
The version for run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
The version for compositions is A332870.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose run-lengths are not unimodal are A332727.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) + A000225(n) - 2*A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024
Showing 1-10 of 11 results. Next