cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A139092 a(n) = number of distinct prime divisors of (9+prime(n)!)/9.

Original entry on oeis.org

3, 3, 2, 2, 2, 3, 2, 3, 4, 4, 5, 3, 3, 6, 5, 2, 3, 4, 3, 3, 4, 4, 4, 3, 7, 3, 3
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Comments

Conjecture: all prime divisors in A139089 are distinct
a(31) >= 4. - Amiram Eldar, Feb 13 2020

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = (Prime[n]! + 9)/9; AppendTo[a, w], {n, 4, 16}]; a
    PrimeNu[(9+Prime[Range[4,25]]!)/9] (* Harvey P. Dale, Jul 25 2019 *)

Formula

a(n) = A001221(A139089(n)). - Amiram Eldar, Feb 13 2020

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010
a(23)-a(30) using factordb.com from Amiram Eldar, Feb 13 2020

A139149 a(n) = (n!+2)/2.

Original entry on oeis.org

2, 4, 13, 61, 361, 2521, 20161, 181441, 1814401, 19958401, 239500801, 3113510401, 43589145601, 653837184001, 10461394944001, 177843714048001, 3201186852864001, 60822550204416001, 1216451004088320001, 25545471085854720001, 562000363888803840001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the (n-1)-(weak) Bruhat graph. - Eric W. Weisstein, Jul 29 2018

Examples

			(1!+2)/2 = 3/2 is not an integer.
a(2) = (2!+2)/2 = 2.
		

Crossrefs

a(n) = (n!+m)/m: A038507 (m=1), this sequence (m=2), A139150 (m=3), A139151 (m=4), A139152 (m=5), A139153 (m=6), A139154 (m=7), A139155 (m=8), A139156 (m=9), A139157 (m=10).
Offsets for above sequences are Kempner numbers A002034.
For smallest number of the form (m!+n)/n see A139148.

Programs

A139150 a(n) = (n!+3)/3.

Original entry on oeis.org

3, 9, 41, 241, 1681, 13441, 120961, 1209601, 13305601, 159667201, 2075673601, 29059430401, 435891456001, 6974263296001, 118562476032001, 2134124568576001, 40548366802944001, 810967336058880001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Examples

			(2!+3)/3 = 5/3 is not an integer.
a(3) = (3!+3)/3 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[(n! + 3)/3, {n, 3, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 13 2024

A139152 a(n) = (n!+5)/5.

Original entry on oeis.org

25, 145, 1009, 8065, 72577, 725761, 7983361, 95800321, 1245404161, 17435658241, 261534873601, 4184557977601, 71137485619201, 1280474741145601, 24329020081766401, 486580401635328001, 10218188434341888001
Offset: 5

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 5)/5, {n, 5, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139153 a(n) = (n!+6)/6.

Original entry on oeis.org

2, 5, 21, 121, 841, 6721, 60481, 604801, 6652801, 79833601, 1037836801, 14529715201, 217945728001, 3487131648001, 59281238016001, 1067062284288001, 20274183401472001, 405483668029440001, 8515157028618240001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 6)/6, {n, 3, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139154 a(n) = (n!+7)/7.

Original entry on oeis.org

721, 5761, 51841, 518401, 5702401, 68428801, 889574401, 12454041601, 186810624001, 2988969984001, 50812489728001, 914624815104001, 17377871486976001, 347557429739520001, 7298706024529920001
Offset: 7

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 7)/7, {n, 7, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139155 a(n) = (n!+8)/8.

Original entry on oeis.org

4, 16, 91, 631, 5041, 45361, 453601, 4989601, 59875201, 778377601, 10897286401, 163459296001, 2615348736001, 44460928512001, 800296713216001, 15205637551104001, 304112751022080001, 6386367771463680001
Offset: 4

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 8)/8, {n, 4, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139163 a(n) = (prime(n)!+5)/5.

Original entry on oeis.org

25, 1009, 7983361, 1245404161, 71137485619201, 24329020081766401, 5170403347776995328001, 1768352398747940390908723200001, 1644567730835584563545112576000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

A139169 a(n)=smallest k >= 1 such that n divides prime(k)!.

Original entry on oeis.org

1, 1, 2, 3, 3, 2, 4, 3, 4, 3, 5, 3, 6, 4, 3, 4, 7, 4, 8, 3, 4, 5, 9, 3, 5, 6, 5, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 3, 13, 4, 14, 5, 4, 9, 15, 4, 7, 5, 7, 6, 16, 5, 5, 4, 8, 10, 17, 3, 18, 11, 4, 5, 6, 5, 19, 7, 9, 4, 20, 4, 21, 12, 5, 8, 5, 6, 22, 4, 5, 13, 23, 4, 7, 14, 10, 5, 24, 4, 6, 9, 11, 15
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,m,Q,E,p;
      F:= ifactors(n)[2];
      m:= nops(F);
      Q:= map(t -> t[1],F);
      E:= map(t -> t[2],F);
      p:= max(Q)-1;
      do
        p:= nextprime(p);
        if andmap(i -> add(floor(p/Q[i]^j),j=1..floor(log[Q[i]](p))) >= E[i], [$1..m]) then return p fi;
      od
    end proc:
    f(1):= 2:
    map(numtheory:-pi @ f, [$1..100]); # Robert Israel, Mar 07 2018
  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[Prime[m]!/n], m++ ]; AppendTo[a, m], {n, 1, 100}]; a
  • PARI
    a(n) = forprime(p=2,, if (!(p! % n), return (primepi(p)))); \\ Michel Marcus, Mar 08 2018

A139171 a(n) = smallest prime number p such that p!/n is an integer.

Original entry on oeis.org

2, 2, 3, 5, 5, 3, 7, 5, 7, 5, 11, 5, 13, 7, 5, 7, 17, 7, 19, 5, 7, 11, 23, 5, 11, 13, 11, 7, 29, 5, 31, 11, 11, 17, 7, 7, 37, 19, 13, 5, 41, 7, 43, 11, 7, 23, 47, 7, 17, 11, 17, 13, 53, 11, 11, 7, 19, 29, 59, 5, 61, 31, 7, 11, 13, 11, 67, 17, 23, 7, 71, 7, 73, 37, 11, 19, 11, 13, 79, 7, 11
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Prime equivalent of Kempner numbers A002034.
For quotients p!/n see A139170.
For indices of primes in this sequence see A139169.

Programs

  • Maple
    f:= proc(n) local F,m,Q,E,p;
      F:= ifactors(n)[2];
      m:= nops(F);
      Q:= map(t -> t[1],F);
      E:= map(t -> t[2],F);
      p:= max(Q)-1;
      do
        p:= nextprime(p);
        if andmap(i -> add(floor(p/Q[i]^j),j=1..floor(log[Q[i]](p))) >= E[i], [$1..m]) then return p fi;
      od
    end proc:
    f(1):= 2:
    map(f, [$1..100]); # Robert Israel, Mar 07 2018
  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[Prime[m]!/n], m++ ]; AppendTo[a, Prime[m]], {n, 1, 100}]; a
  • PARI
    a(n) = forprime(p=2,, if (!(p! % n), return (p))); \\ Michel Marcus, Mar 08 2018
Previous Showing 31-40 of 49 results. Next