cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A302860 a(n) = [x^n] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 3, 9, 27, 89, 333, 1341, 5449, 21697, 84663, 327829, 1275739, 5020457, 19964623, 79883141, 320317827, 1284656385, 5152761033, 20686311261, 83182322509, 335110196569, 1352277390001, 5463873556381, 22097867887045, 89441286136465, 362277846495883, 1468465431530457
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of integer lattice points inside the n-dimensional hypersphere of radius sqrt(n).

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n}], {n, 0, 26}]

Formula

a(n) = A122510(n,n).
a(n) ~ c / (sqrt(n) * r^n), where r = 0.241970723224463308846762732757915397312... (= radius of convergence A166952) and c = 0.716940866073606328... - Vaclav Kotesovec, Apr 14 2018

A341396 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_7)^2 <= n.

Original entry on oeis.org

1, 15, 99, 379, 953, 1793, 3081, 5449, 8893, 12435, 16859, 24419, 33659, 42115, 53203, 69779, 88273, 106081, 125821, 153541, 187981, 217437, 248741, 298469, 351277, 394691, 446939, 515259, 589307, 657683, 728803, 828259, 939223, 1029159, 1124023, 1260103
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A008451.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 7)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[EllipticTheta[3, 0, x]^7/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[7, n], {n, 0, 35}] // Accumulate
  • PARI
    my(q='q+O('q^(55))); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^7/(1-q)) \\ Joerg Arndt, Jun 21 2024

Formula

G.f.: theta_3(x)^7 / (1 - x).
a(n^2) = A055413(n).

A000413 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)*Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives A(A000092(n)).

Original entry on oeis.org

1, 7, 19, 57, 81, 251, 437, 691, 739, 1743, 3695, 6619, 8217, 9771, 14771, 15155, 16831, 18805, 26745, 30551, 41755, 46297, 54339, 72359, 86407, 96969, 131059, 344859, 395231, 519963, 607141, 677397, 741509, 893019, 917217, 1288415, 1406811, 1789599, 1827927, 3085785, 3216051, 3444439, 3524869
Offset: 0

Views

Author

Keywords

Comments

The initial value a(0) = 1 corresponds to an initial A000092(0) = 0 which is the index of a record in the sense that the value P(0) = 0 is larger than all preceding values, because there are none. - M. F. Hasler, May 04 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117609 (A(n) in name).

Programs

  • Mathematica
    P[n_] := (s = Sum[SquaresR[3, k], {k, 0, n}]) - Round[(4/3)*Pi*n^(3/2)]; record = 0; A000092 = Reap[For[n = 0, n <= 10^4, n++, If[(p = Abs[P[n]]) > record, record = p; Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Feb 08 2016, after M. F. Hasler in A000092 *)

Formula

a(n) = A117609(A000092(n)), considering A000092(0) = 0. - M. F. Hasler, May 04 2022

Extensions

Revised Jun 28 2005
a(37)-a(42) from Vincenzo Librandi, Aug 21 2016

A341398 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_9)^2 <= n.

Original entry on oeis.org

1, 19, 163, 835, 2869, 7189, 14581, 27253, 49861, 84663, 129303, 190071, 284055, 409335, 550455, 732855, 995241, 1312617, 1656153, 2077497, 2634777, 3300057, 4003641, 4804281, 5872665, 7129227, 8363307, 9784491, 11635755, 13670475, 15727755, 18066315, 20950491
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A008452.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 9)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 32; CoefficientList[Series[EllipticTheta[3, 0, x]^9/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[9, n], {n, 0, 32}] // Accumulate

Formula

G.f.: theta_3(x)^9 / (1 - x).
a(n^2) = A055415(n).

A341399 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_10)^2 <= n.

Original entry on oeis.org

1, 21, 201, 1161, 4541, 12965, 29285, 58085, 110105, 198765, 327829, 503509, 765589, 1152509, 1642109, 2243069, 3083569, 4221529, 5551949, 7115789, 9166133, 11777333, 14763893, 18121973, 22316213, 27634481, 33512921, 39812441, 47674841, 57294401, 67510721, 78592961
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A000144.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 10)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[EllipticTheta[3, 0, x]^10/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[10, n], {n, 0, 31}] // Accumulate

Formula

G.f.: theta_3(x)^10 / (1 - x).
a(n^2) = A055416(n).

A373881 Number of lattice points inside the ball x^2 + y^2 + z^2 <= 10^n.

Original entry on oeis.org

7, 147, 4169, 132451, 4187857, 132459677, 4188781437, 132461190717, 4188790061109, 132461176423805, 4188790203273025, 132461176878317635
Offset: 0

Views

Author

Seiichi Manyama, Jun 21 2024

Keywords

Crossrefs

Programs

  • PARI
    b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
    a(n) = b(3, 10^n);

Formula

a(n) = A117609(10^n).
Limit_{n->oo} a(n) = (4*Pi/3)*(10^n)^(3/2). - Hugo Pfoertner, Jun 21 2024

Extensions

a(7)-a(10) from Hugo Pfoertner, Jun 21 2024
a(11) from Chai Wah Wu, Jun 24 2024

A122699 Least integer that can be written as a sum of 3 squares in n nontrivial ways (ignoring order and signs).

Original entry on oeis.org

7, 0, 9, 41, 81, 146, 194, 306, 369, 425, 594, 689, 866, 1109, 1161, 1154, 1361, 1634, 1781, 1889, 2141, 2729, 2609, 3626, 3366, 3566, 3449, 3506, 4241, 4289, 4826, 5066, 5381, 7034, 5561, 6254, 7229, 7829, 8186, 8069, 8126, 8609, 8921, 8774, 10386
Offset: 0

Views

Author

Wouter Meeussen, Oct 21 2006

Keywords

Comments

Essentially the same as A095809. [From R. J. Mathar, Aug 02 2008]

Examples

			a(4)=81 since it can be written as 0^2+0^2+9^2, 1^2+4^2+8^2, 3^2+6^2+6^2, 4^2+4^2+7^2.
		

Crossrefs

Cf. A117609.

Programs

  • Mathematica
    Needs["NumberTheory`NumberTheoryFunctions`"]; Flatten[Position[Table[Length@SumOfSquaresRepresentations[3,n], {n,0,65000}],#,1,1]-1]& /@ Range[0,120]

A175366 Partial sums of A175365.

Original entry on oeis.org

1, 7, 19, 27, 27, 27, 27, 27, 33, 57, 81, 81, 81, 81, 81, 81, 93, 117, 117, 117, 117, 117, 117, 117, 125, 125, 125, 131, 155, 179, 179, 179, 179, 179, 179, 203, 251, 251, 251, 251, 251, 251, 251, 275, 275, 275, 275, 275, 275, 275, 275, 275, 275, 275, 287, 311
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

Number of integer triples (x,y,z) satisfying |x|^3+|y|^3+|z|^3 <= n, -n <= x,y,z <= n. A variant of A117609 with cubes instead of squares.

A175376 Partial sums of A175375.

Original entry on oeis.org

1, 7, 19, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 33, 57, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 93, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

Number of integer triples (x,y,z) satisfying x^4+y^4+z^4 <= n, -n <= x,y,z <= n.

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    A:= Array(0..N):
    for i from 0 while i^4 <= N do
      if i=0 then ai:= 1 else ai:= 2 fi;
      for j from 0 while i^4 + j^4 <= N do
        if j=0 then aj:= 1 else aj:= 2 fi;
        for k from 0 do
          v:= i^4 + j^4 + k^4;
          if v > N then break fi;
          if k = 0 then ak:= 1 else ak:= 2 fi;
          A[v]:= A[v] + ai*aj*ak;
    od od od:
    ListTools:-PartialSums(convert(A,list)); # Robert Israel, May 01 2019

Formula

G.f.: (1 + 2*Sum_{j>0} x^(j^4))^3/(1-x). - Robert Israel, May 01 2019

A372512 Number of solutions to x^2 + y^2 + z^2 <= n, where x, y, z are positive odd integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 11, 17, 17, 17, 17, 17, 17, 17, 17, 20, 20, 20, 20, 20, 20, 20, 20, 26, 26, 26, 26, 26, 26, 26, 26, 35, 35, 35, 35, 35, 35, 35, 35, 38, 38, 38, 38, 38, 38, 38, 38, 45, 45, 45, 45, 45, 45
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[EllipticTheta[2, 0, x^4]^3/(8 (1 - x)), {x, 0, nmax}], x]
Previous Showing 11-20 of 22 results. Next