cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A237825 Number of partitions of n such that 3*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 5, 5, 8, 9, 13, 14, 18, 20, 27, 28, 35, 38, 49, 51, 61, 66, 81, 86, 102, 109, 130, 136, 161, 172, 202, 214, 245, 264, 305, 323, 369, 395, 452, 480, 544, 580, 657, 703, 786, 842, 947, 1008, 1124, 1205, 1340, 1432, 1589, 1702, 1886, 2014
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(3#[[-1]]==#[[1]]&)],{n,60}] (* _Harvey P. Dale, May 14 2023 *)
    kmax = 57;
    Sum[x^(4 k)/Product[1 - x^j, {j, k, 3 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, 3*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(4*k)/Product_{j=k..3*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 0.23036554... - Vaclav Kotesovec, Jun 14 2025

A237826 Number of partitions of n such that 4*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 9, 12, 16, 20, 26, 31, 38, 47, 55, 67, 78, 92, 106, 126, 145, 167, 190, 219, 247, 288, 320, 366, 410, 466, 520, 591, 654, 739, 820, 924, 1018, 1148, 1263, 1415, 1562, 1740, 1911, 2136, 2342, 2607, 2859, 3169, 3469, 3849, 4208
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  431, 4211, 41111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(#[[1]]==4#[[-1]]&)],{n,60}] (* _Harvey P. Dale, Jun 15 2023 *)
    kmax = 55;
    Sum[x^(5k)/Product[1 - x^j, {j, k, 4 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=k, 4*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(5*k)/Product_{j=k..4*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 4.9219345... and c = 0.1699648... - Vaclav Kotesovec, Jun 19 2025

A237827 Number of partitions of n such that 5*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 13, 19, 24, 32, 39, 52, 61, 77, 93, 114, 133, 164, 188, 226, 261, 309, 353, 417, 471, 549, 622, 717, 808, 933, 1042, 1191, 1334, 1516, 1690, 1921, 2131, 2407, 2674, 3006, 3330, 3744, 4135, 4628, 5116, 5708, 6294, 7020
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 2 counts these partitions:  521, 5111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] = = Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] = = Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] = = Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 = = Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 = = Max[p]], {n, z}] (* A237829 *)
    (* Second program: *)
    kmax = 54;
    Sum[x^(6 k)/Product[1 - x^j, {j, k, 5 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k)/prod(j=k, 5*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(6*k)/Product_{j=k..5*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 5.4930955... and c = 0.135509... - Vaclav Kotesovec, Jun 19 2025

A117086 Number of partitions of n such that the largest part is a multiple of the smallest part.

Original entry on oeis.org

1, 2, 3, 5, 6, 11, 12, 20, 26, 37, 45, 71, 84, 117, 152, 203, 253, 342, 421, 556, 694, 884, 1096, 1409, 1729, 2168, 2672, 3327, 4061, 5039, 6114, 7514, 9110, 11098, 13400, 16275, 19537, 23575, 28245, 33929, 40465, 48424, 57552, 68569, 81296, 96449
Offset: 1

Views

Author

Vladeta Jovovic, Apr 17 2006

Keywords

Comments

Also number of partitions of n such that the number of parts is a multiple of the multiplicity of the largest part. Example: a(7)=12 because from the 15 (=A000041(7)) partitions of 7 only [3,3,1], [2,2,2,1] and [2,2,1,1,1] do not qualify (3,4,5 are not multiples of 2,3,2, respectively). - Emeric Deutsch, Apr 21 2006

Examples

			a(7)=12 because from the 15 (=A000041(7)) partitions of 7 only [5,2],[4,3] and [3,2,2] do not qualify.
		

Crossrefs

Cf. A118096.
Cf. A000041.

Programs

Formula

G.f.: Sum_{L>=0} Sum_{k>=1} (x^((L+1)*k) / Product_{i=k..L*k} (1 - x^i)).

Extensions

More terms from Emeric Deutsch, Apr 21 2006

A361868 Positive integers > 1 whose prime indices satisfy (maximum) >= 2*(median).

Original entry on oeis.org

12, 20, 24, 28, 40, 42, 44, 48, 52, 56, 60, 63, 66, 68, 72, 76, 78, 80, 84, 88, 92, 96, 99, 102, 104, 112, 114, 116, 117, 120, 124, 126, 130, 132, 136, 138, 140, 144, 148, 152, 153, 156, 160, 164, 168, 170, 171, 172, 174, 176, 184, 186, 188, 189, 190, 192, 195
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 84 are {1,1,2,4}, with maximum 4 and median 3/2, and 4 >= 2*(3/2), so 84 is in the sequence.
The terms together with their prime indices begin:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

The LHS is A061395 (greatest prime index).
The RHS is A360005 (twice median), distinct A360457.
The equal case is A361856, counted by A361849.
These partitions are counted by A361859.
The unequal case is A361867, counted by A361857.
The complement is counted by A361858.
A000975 counts subsets with integer median.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@prix[#]>=2*Median[prix[#]]&]

A238589 Number of partitions p of n such that 2*min(p) is a part of p.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 5, 8, 13, 17, 24, 36, 47, 64, 88, 116, 153, 203, 261, 340, 439, 559, 710, 905, 1136, 1427, 1786, 2223, 2756, 3415, 4201, 5167, 6330, 7730, 9413, 11449, 13864, 16767, 20225, 24344, 29228, 35045, 41898, 50029, 59609, 70899, 84165, 99785, 118052
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2014

Keywords

Examples

			a(6) counts these partitions:  42, 321, 2211, 21111.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Min[p]]], {n, 50}]
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/prod(j=k, N, 1-x^j)))) \\ Seiichi Manyama, May 17 2023

Formula

a(n) = A000041(n) - A238594(n).
G.f.: Sum_{k>=1} x^(3*k)/Product_{j>=k} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 49*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Jun 19 2025

A239497 Number of partitions p of n such that if h = min(p), then h is an (h,1)-separator of p; see Comments.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 5, 7, 9, 11, 15, 17, 22, 28, 34, 40, 52, 60, 75, 90, 109, 129, 160, 186, 225, 268, 321, 376, 455, 530, 632, 743, 878, 1028, 1219, 1416, 1667, 1947, 2281, 2648, 3103, 3593, 4189, 4857, 5638, 6516, 7564, 8715, 10080, 11614, 13394, 15392
Offset: 1

Views

Author

Clark Kimberling, Mar 24 2014

Keywords

Comments

Suppose that p is a partition of n into 2 or more parts and that h is a part of p. Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h. Here, the number of h's on the ends of the ordering is 0. Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ..., x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ..., x, h. Finally, p is h-separable if it is (h,i)-separable for i = 0,1,2.

Examples

			a(7) counts these partitions: 61, 52, 43, 3211.
		

Crossrefs

Programs

  • Mathematica
    z = 35; t1 = Table[Count[IntegerPartitions[n],  p_ /; 2 Count[p, Min[p]] == Length[p]], {n, 1, z}]  (* A239497 *)
    t2 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p]], {n, 1, z}] (* A239498 *)
    t3 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p]], {n, 1, z}] (* A118096 *)
    t4 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Length[p]] == Length[p]], {n, 1, z}] (* A239500 *)
    t5 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p]], {n, 1, z}]  (* A239501 *)

A361909 Positive integers > 1 whose prime indices satisfy: (maximum) = 2*(length).

Original entry on oeis.org

3, 14, 21, 35, 49, 52, 78, 117, 130, 152, 182, 195, 228, 273, 286, 325, 338, 342, 380, 429, 455, 464, 507, 513, 532, 570, 637, 696, 715, 798, 836, 845, 855, 950, 988, 1001, 1044, 1160, 1183, 1184, 1197, 1254, 1292, 1330, 1425, 1444, 1482, 1566, 1573, 1624
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     3: {2}
    14: {1,4}
    21: {2,4}
    35: {3,4}
    49: {4,4}
    52: {1,1,6}
    78: {1,2,6}
   117: {2,2,6}
   130: {1,3,6}
   152: {1,1,1,8}
   182: {1,4,6}
   195: {2,3,6}
   228: {1,1,2,8}
   273: {2,4,6}
   286: {1,5,6}
   325: {3,3,6}
   338: {1,6,6}
   342: {1,2,2,8}
		

Crossrefs

The LHS is A061395 (greatest prime index), least A055396.
Without multiplying by 2 in the RHS, we have A106529.
For omega instead of bigomega we have A111907, counted by A239959.
Partitions of this type are counted by A237753.
The RHS is A255201 (twice bigomega).
For mean instead of length we have A361855, counted by A361853.
For median instead of length we have A361856, counted by A361849.
For minimum instead of length we have A361908, counted by A118096.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors with multiplicity.
A112798 lists prime indices, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]==2*PrimeOmega[#]&]

A237829 Number of partitions of n such that 2*(least part) - 1 = greatest part.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 3, 4, 5, 5, 6, 8, 6, 8, 10, 10, 10, 15, 12, 14, 17, 18, 20, 23, 21, 26, 29, 30, 31, 39, 38, 42, 46, 49, 52, 61, 60, 68, 74, 77, 83, 94, 95, 104, 112, 122, 128, 143, 144, 159, 172, 181, 192, 212, 219, 237, 253, 271, 285
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  53, 332, 11111111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    (* Second program: *)
    kmax = 64;
    Sum[x^(3k-1)/Product[1-x^j, {j, k, 2k-1}], {k, 1, kmax}]/x+1+O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
    nmax = 100; p = 1; s = x; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(3*k - 1)/(1 - x^k)*(1 - x^(2*k))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); Vec(x+sum(k=1, N, x^(3*k-1)/prod(j=k, 2*k-1, 1-x^j))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: x + Sum_{k>=1} x^(3*k-1)/Product_{j=k..2*k-1} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ exp(Pi*sqrt(2*n/15)) / (sqrt(2)* 5^(1/4) * phi^(3/2) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 20 2025

A239498 Number of partitions p of n such that if h = 2*min(p), then h is an (h,1)-separator of p; see Comments.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 1, 3, 1, 2, 5, 4, 4, 8, 7, 9, 15, 15, 18, 23, 26, 32, 43, 47, 57, 72, 80, 98, 120, 138, 163, 198, 227, 267, 323, 372, 438, 517, 596, 696, 818, 944, 1098, 1282, 1477, 1711, 1989, 2285, 2637, 3049, 3496, 4023, 4633, 5303, 6080, 6976, 7968
Offset: 1

Views

Author

Clark Kimberling, Mar 24 2014

Keywords

Comments

Suppose that p is a partition of n into 2 or more parts and that h is a part of p. Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h. Here, the number of h's on the ends of the ordering is 0. Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ..., x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ..., x, h. Finally, p is h-separable if it is (h,i)-separable for i = 0,1,2.

Examples

			a(9) counts these partitions: 63, 4212, 212121.
		

Crossrefs

Programs

  • Mathematica
    z = 35; t1 = Table[Count[IntegerPartitions[n],  p_ /; 2 Count[p, Min[p]] == Length[p]], {n, 1, z}]  (* A239497 *)
    t2 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p]], {n, 1, z}] (* A239498 *)
    t3 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p]], {n, 1, z}] (* A118096 *)
    t4 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Length[p]] == Length[p]], {n, 1, z}] (* A239500 *)
    t5 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p]], {n, 1, z}]  (* A239501 *)
Previous Showing 11-20 of 31 results. Next