A239500 Number of partitions p of n such that if h = (number of parts of p), then h is an (h,1)-separator of p; see Comments.
0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 29, 32, 36, 39, 43, 48, 53, 58, 65, 70, 78, 85, 93, 101, 112, 120, 132, 143, 156, 168, 184, 198, 216, 233, 253, 273, 298, 320, 348, 376, 407, 439
Offset: 1
Examples
a(12) counts these partitions: 84, 4431, 4422.
Programs
-
Mathematica
z = 35; t1 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p]], {n, 1, z}] (* A239497 *) t2 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p]], {n, 1, z}] (* A239498 *) t3 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p]], {n, 1, z}] (* A118096 *) t4 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Length[p]] == Length[p]], {n, 1, z}] (* A239500 *) t5 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p]], {n, 1, z}] (* A239501 *)
Comments