cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A255859 Least m > 0 such that gcd(m^n+9,(m+1)^n+9) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 18, 533, 1, 32, 288, 484, 1, 364, 6, 176427, 1, 31239, 533, 8, 1, 8424432925592889329288197322308900672459420460792433, 30, 16561, 1, 4, 6, 349, 1, 32, 546, 2579, 1, 375766, 11, 5061867704425915, 1, 5620, 6, 8, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(m^n+9, (m+1)^n+9) = gcd(m+9, m+10) = 1, therefore a(1)=0.
For n=2, we have gcd(18^2+9, 19^2+9) = gcd(333, 370) = 37, and the pair (m,m+1)=(18,19) is the smallest which yields a GCD > 1, therefore a(2)=37.
For n=4k, see formula.
		

Crossrefs

Programs

  • Mathematica
    A255859[n_] := Module[{m = 1}, While[GCD[m^n + 9, (m + 1)^n + 9] <= 1, m++]; m]; Join[{1, 0}, Table[A255859[n], {n, 2, 16}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=9,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}

Formula

a(4k)=1 for k>=0, because gcd(1^(4k)+9, 2^(4k)+9) = gcd(10, 16^k-1) = 5.

Extensions

a(17)-a(30) from Hiroaki Yamanouchi, Mar 12 2015
a(31)-a(36) from Max Alekseyev, Aug 06 2015

A186710 a(n) = gcd(k^n + 1, (k+1)^n + 1) for the smallest k at which the GCD exceeds 1.

Original entry on oeis.org

5, 7, 17, 11, 5, 29, 17, 19, 25, 23, 17, 53, 145, 61, 353, 137, 5, 191, 41, 43, 5, 47, 97, 11, 265, 19, 337, 59, 25, 5953, 257, 67, 5, 29, 17, 223, 5, 157, 17, 83, 145, 173, 89, 19, 5, 283, 353, 29, 12625, 307, 17, 107, 5, 121, 1921, 229, 5, 709, 241, 367, 5, 817, 769, 521, 5, 269, 137, 139, 725, 853, 55969, 293, 745, 61, 17, 29, 265
Offset: 2

Views

Author

Michel Lagneau, Feb 26 2011

Keywords

Comments

For k=0, the GCD equals 1. Increasing k, the GCD first exceeds 1 at k = A118119(n), and that GCD is a(n).

Examples

			a(2) = 5 because 2^2 + 1 = 5 and 3^2+1 = 2*5;
a(3) = 7 because 5^3 + 1 = 2*3^2*7 and 6^3 + 1 = 7*31.
		

Crossrefs

Cf. A118119.

Programs

  • Maple
    A186710 := proc(n) local k ,g; for k from 1 do g := igcd(k^n+1,(k+1)^n+1) ; if g>1 then return g ; end if; end do: end proc: # R. J. Mathar, Mar 07 2011

A255868 Least m > 0 such that gcd(m^n+18, (m+1)^n+18) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 36, 5, 8, 193801631, 7, 16280817091929, 5, 4, 9216, 815167161742047217904392262, 7, 46, 20, 5, 19, 1837, 1, 224, 8, 7, 56, 13215457, 5, 130689, 221, 4, 5, 1167507, 7, 9708, 65, 7, 20, 63, 1, 4248, 5, 5, 5, 527010, 7
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+18, (m+1)^0+18) = gcd(19, 19) = 19, therefore a(0)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+18, (m+1)^n+18) = gcd(m+18, m+19) = 1, therefore a(1)=0.
For n=2, gcd(36^2+18, 37^2+18) = 73 and (m, m+1) = (36, 37) is the smallest pair which yields a GCD > 1 here.
		

Crossrefs

Programs

  • Mathematica
    A255868[n_] :=  Module[{m = 1}, While[GCD[m^n + 18, (m + 1)^n + 18] <= 1, m++]; m]; Join[{1, 0}, Table[A255868[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=18,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Extensions

a(5)-a(42) from Max Alekseyev, Aug 06 2015

A010034 Numbers k such that gcd(k^17 + 9, (k+1)^17 + 9) > 1.

Original entry on oeis.org

8424432925592889329288197322308900672459420460792433, 17361015163508605989239159575667846308252873717727992, 26297597401424322649190121829026791944046326974663551, 35234179639340039309141084082385737579839780231599110
Offset: 1

Views

Author

Ilan Vardi, Stan Wagon

Keywords

Comments

In other words, let f(n) = gcd(n^17 + 9, (n+1)^17 + 9). Then f(n) = 1 for all n <= 8424432925592889329288197322308900672459420460792432, but f(8424432925592889329288197322308900672459420460792433) > 1.
In fact f(8424432925592889329288197322308900672459420460792433) = 8936582237915716659950962253358945635793453256935559.

Crossrefs

Programs

  • Mathematica
    Table[8424432925592889329288197322308900672459420460792433+ 8936582237915716659950962253358945635793453256935559(n-1),{n,5}] (* or *) LinearRecurrence[{2,-1},{8424432925592889329288197322308900672459420460792433,17361015163508605989239159575667846308252873717727992},5] (* Harvey P. Dale, Jun 12 2014 *)
  • PARI
    A010034(n)=8936582237915716659950962253358945635793453256935559*n-512149312322827330662764931050044963334032796143126 \\ M. F. Hasler, Mar 17 2015
    
  • PARI
    \\ The values (a(1),p) can also be found using:
    {p=polresultant(x^17+9,(x+1)^17+9);s=vector(2,i,Mod(-9,p)^(1/17));(u=s[2]/s[1])!=1&&until(setsearch(Set(s=concat(s,s[#s]*u)),s[#s]+1),)}
    \\ Then the last element s[#s] equals Mod(a(1),p). - M. F. Hasler, Mar 26 2015

Formula

a(n) = 8424432925592889329288197322308900672459420460792433 + 8936582237915716659950962253358945635793453256935559*(n-1). - Max Alekseyev, Jul 26 2009
a(1) = A255859(17). - M. F. Hasler, Mar 17 2015

Extensions

More terms from Max Alekseyev, Jul 26 2009

A255860 Least m > 0 such that gcd(m^n+10, (m+1)^n+10) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 20, 3, 2, 3, 320, 874, 6, 33, 1, 124, 465, 23433448460229, 81920, 3, 2, 82, 65, 2101, 1, 3, 3, 2398892314, 7270, 3, 11, 21, 2, 97546469, 1, 765170730, 6, 15, 3, 3, 23, 370460325141871548, 29206018, 3, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+10, (m+1)^0+10) = gcd(11, 11) = 11 for any m > 0, therefore a(0)=1 is the smallest possible positive value.
For n=1, gcd(m^n+10, (m+1)^n+10) = gcd(m+10, m+11) = 1, therefore a(1)=0.
For n=2, we have gcd(20^2+10, 21^2+10) = gcd(410, 451) = 41, and the pair (m,m+1)=(20,21) is the smallest which yields a GCD > 1, therefore a(2)=20.
		

Crossrefs

Programs

  • Mathematica
    A255860[n_] := Module[{m = 1}, While[GCD[m^n + 10, (m + 1)^n + 10] <= 1, m++]; m]; Join[{1, 0}, Table[A255860[n], {n, 2, 12}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=10,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}

Extensions

a(13)-a(36) from Hiroaki Yamanouchi, Mar 13 2015
a(37)-a(40) from Max Alekseyev, Aug 06 2015

A255861 Least m > 0 such that gcd(m^n+11, (m+1)^n+11) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 1, 2, 1, 23, 1, 19010820161, 1, 7, 1, 360, 1, 41953103, 1, 4, 1, 638386957517954762853, 1, 38884, 1, 2, 1, 2852, 1, 23, 1, 102, 1, 8384, 1, 36556, 1, 33, 1, 37, 1, 336, 1, 2, 1, 1123, 1, 19734, 1, 9, 1, 135356, 1, 399351, 1, 33, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(m^n+11, (m+1)^n+11) = gcd(m+11, m+12) = 1, therefore a(1)=0.
For n=2, we have gcd(2^2+11, 3^2+11) = gcd(15, 20) = 5, and the pair (m,m+1)=(2,3) is the smallest which yields a GCD > 1, therefore a(2)=2.
		

Crossrefs

Programs

  • Mathematica
    A255861[n_] := Module[{m = 1}, While[GCD[m^n + 11, (m + 1)^n + 11] <= 1, m++]; m]; Join[{1, 0}, Table[A255861[n], {n, 2, 6}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=11,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(2k)=1 for k>=0, because gcd(1^(2k)+11, 2^(2k)+11) = gcd(12, 4^k-1) = 3.

Extensions

a(7)-a(48) from Hiroaki Yamanouchi, Mar 12 2015
a(49)-a(52) from Max Alekseyev, Aug 06 2015

A255862 Least m > 0 such that gcd(m^n+12, (m+1)^n+12) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 3, 1926, 96, 6, 2, 26, 3, 320, 538, 27, 1, 145, 3, 6, 393216, 982, 3, 2557, 3, 2, 30, 18781248, 1, 6, 3, 188, 14, 145, 3, 2808, 3, 16, 24340653915, 6, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+12, (m+1)^0+12) = gcd(13, 13) = 13, therefore a(1)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+12, (m+1)^n+12) = gcd(m+12, m+13) = 1, therefore a(1)=0.
For n=2, see formula with k=0.
		

Crossrefs

Programs

  • Mathematica
    A255862[n_] := Module[{m = 1}, While[GCD[m^n + 12, (m + 1)^n + 12] <= 1, m++]; m]; Join[{1, 0}, Table[A255862[n], {n, 2, 22}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=12,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(6k+2) = 3 for k>=0, because 3^(6k+2) = 9^(3k+1), 4^(6k+2) = 16^(3k+1), and 9 = 16 = 2 (mod 7), 2^3 = 1 (mod 7) and 12 = -2 (mod 7), therefore 3^(6k+2)+12 = 4^(6k+2)+12 = 0 (mod 7) and gcd(3^(6k+2)+12, 4^(6k+2)+12) >= 7.

Extensions

a(23)-a(33) from Hiroaki Yamanouchi, Mar 13 2015
a(34)-a(36) from Max Alekseyev, Aug 07 2015

A255863 Least m > 0 such that gcd(m^n+13, (m+1)^n+13) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 26, 1, 5, 24308100, 1, 329, 71, 1, 6, 59, 1, 135, 5, 1, 23, 7711, 1, 82, 6, 1, 8, 320594291825643656342, 1, 45, 10, 1, 755, 1107, 1, 4279, 30269, 1, 5, 205961, 1, 259, 8, 1, 9, 101975, 1, 6491, 5, 1, 8
Offset: 0

Views

Author

M. F. Hasler, Mar 10 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(m^n+13, (m+1)^n+13) = gcd(m+13, m+14) = 1, therefore a(1)=0.
For n=2, gcd(26^2+13, 27^2+13) = 53, and (m, m+1) = (26, 27) is the smallest pair which yields a GCD > 1 here.
For n=0, n=3, n=6,... see formula.
		

Crossrefs

Programs

  • Mathematica
    A255863[n_] := Module[{m = 1}, While[GCD[m^n + 13, (m + 1)^n + 13] <= 1, m++]; m]; Join[{1, 0}, Table[A255863[n], {n, 2, 22}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=13,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(3k) = 1 for k>=0, because 1^(3k)+13 = 14, 2^(3k)+13 = 8^k+13 = 14 (mod 7), therefore gcd(1^(3k)+13, 2^(3k)+13) >= 7.

Extensions

a(5)-a(46) from Hiroaki Yamanouchi, Mar 12 2015

A255864 Least m > 0 such that gcd(m^n+14, (m+1)^n+14) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 1, 12, 1, 15, 1, 2, 1, 1929501, 1, 13228907223310811104028677, 1, 94, 1, 11, 1, 85364353, 1, 1563, 1, 49, 1, 9258095644888888790279763522646107297983, 1, 23, 1, 66, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.
a(29) with 141 decimal digits is too large to include here (see b-file).

Examples

			For n=1, gcd(m^n+14, (m+1)^n+14) = gcd(m+14, m+15) = 1, therefore a(1)=0.
For n=0 and n=2, see formula with k=0 and k=1.
For n=3, gcd(12^3+14, 13^3+14) = 67, and (m, m+1) = (12, 13) is the smallest pair which yields a GCD > 1 here.
		

Crossrefs

Programs

  • Mathematica
    A255864[n_] := Module[{m = 1}, While[GCD[m^n + 14, (m + 1)^n + 14] <= 1, m++]; m]; Join[{1, 0}, Table[A255864[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=14,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(2k) = 1 for k>=0, because gcd(1^(2k)+14, 2^(2k)+14) = gcd(15, 4^k-1) >= 3, since 4^k-1 = 1-1 = 0 (mod 3).

Extensions

a(11)-a(40) from Max Alekseyev, Aug 06 2015

A255865 Least m > 0 such that gcd(m^n+15, (m+1)^n+15) > 1, or 0 if there is no such m.

Original entry on oeis.org

1, 0, 30, 5, 120, 133, 15, 14, 11, 5, 7680, 968, 18, 243, 26, 5, 9, 1844434621273219148118716000949433592399169477194046126, 8, 22173201293492286974730770140, 51, 5, 593, 5885, 41, 112, 15, 5, 23
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=0, gcd(m^0+15, (m+1)^0+15) = gcd(16, 16) = 16, therefore a(0)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+15, (m+1)^n+15) = gcd(m+15, m+16) = 1, therefore a(1)=0.
For n=2, gcd(30^2+15, 31^2+15) = 61 and (m, m+1) = (30, 31) is the smallest pair which yields a GCD > 1 here.
For n=3, see formula with k=0.
		

Crossrefs

Programs

  • Mathematica
    A255865[n_] := Module[{m = 1}, While[GCD[m^n + 15, (m + 1)^n + 15] <= 1, m++]; m]; Join[{1, 0}, Table[A255865[n], {n, 2, 16}]] (* Robert Price, Oct 16 2018 *)
  • PARI
    a(n,c=15,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}

Formula

a(6k+3) = 5 for k>=0, because 5^(6k+3) = 125^(2k+1), 6^(6k+3) = 216^(2k+1), and 125 = 216 = -1 (mod 7), therefore gcd(5^(6k+3)+15, 6^(6k+3)+15) >= 7.

Extensions

a(17)-a(36) from Hiroaki Yamanouchi, Mar 12 2015
a(37)-a(42) from Max Alekseyev, Aug 07 2015
Previous Showing 11-20 of 23 results. Next