cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A118600 Palindromes in base 9 (written in base 9).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 22, 33, 44, 55, 66, 77, 88, 101, 111, 121, 131, 141, 151, 161, 171, 181, 202, 212, 222, 232, 242, 252, 262, 272, 282, 303, 313, 323, 333, 343, 353, 363, 373, 383, 404, 414, 424, 434, 444, 454, 464, 474, 484, 505, 515, 525, 535, 545
Offset: 1

Views

Author

Martin Renner, May 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    (* get NextPalindrome from A029965 *) Select[NestList[NextPalindrome, 0, 62], Max@IntegerDigits@# < 9 &] (* Robert G. Wilson v, May 09 2006 *)
  • Python
    from gmpy2 import digits
    def palgenbase(l,b): # generator of palindromes in base b <=10 of length <= 2*l, written in base b
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[-2::-1])
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[::-1])
    A118600_list = list(palgenbase(3,9)) # Chai Wah Wu, Dec 01 2014
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A118600(n):
        if n == 1: return 0
        y = 9*(x:=9**integer_log(n>>1,9)[0])
        return int((s:=digits(n-x,9))+s[-2::-1] if nChai Wah Wu, Jun 14 2024

Extensions

More terms from Robert G. Wilson v, May 09 2006

A111575 Powers of 3 repeated four times.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27, 81, 81, 81, 81, 243, 243, 243, 243, 729, 729, 729, 729, 2187, 2187, 2187, 2187, 6561, 6561, 6561, 6561, 19683, 19683, 19683, 19683, 59049, 59049, 59049, 59049, 177147, 177147, 177147, 177147, 531441
Offset: 0

Views

Author

Jeremy Gardiner, Nov 17 2005

Keywords

Comments

Generating sequence for the number of 0's and 1's (run lengths) in the parity of A006072, A111065 and A118594.

Examples

			a(10) = 3^floor(10/4) = 3^2 = 9.
		

Crossrefs

Programs

Formula

a(n) = 3^floor(n/4).
O.g.f.: -(1+x)*(1+x^2)/(-1+3*x^4). - R. J. Mathar, Jan 08 2008

A263608 Palindromes which are base-3 representations of squares.

Original entry on oeis.org

0, 1, 11, 121, 10201, 11111, 112211, 122221, 1002001, 1120211, 11022011, 100020001, 101212101, 122111221, 1012112101, 1100220011, 10000200001, 10111011101, 110002200011, 111221122111, 1000002000001, 1001221221001, 1012200022101, 1101202021011, 1221221221221, 10101111110101
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2015

Keywords

Crossrefs

Intersection of A001738 and A118594.

Programs

  • Maple
    rev3:= proc(n) local L,i; L:= convert(n,base,3); add(L[-i]*3^(i-1),i=1..nops(L)) end proc:
    c3:= proc(n) local L,i; L:= convert(n,base,3); add(L[i]*10^(i-1),i=1..nops(L)) end proc:
    R:= 0,1: count:= 2:
    for d from 2 while count < 100 do
        if d::odd then
          V:= select(issqr, [seq(seq(a*3^((d+1)/2) + b*3^((d-1)/2)+rev3(a),b=0..2),a=3^((d-3)/2) .. 3^((d-1)/2)-1)])
        else
          V:= select(issqr, [seq(a*3^(d/2) + rev3(a), a=3^(d/2-1) .. 3^(d/2)-1)]);
        fi;
        count:= count+nops(V);
        R:= R, op(map(c3,V));
    od:
    R; # Robert Israel, May 19 2024

Extensions

Name edited by Robert Israel, May 19 2024

A006940 Rows of Pascal's triangle mod 3.

Original entry on oeis.org

1, 11, 121, 1001, 11011, 121121, 1002001, 11022011, 121212121, 1000000001, 11000000011, 121000000121, 1001000001001, 11011000011011, 121121000121121, 1002001001002001, 11022011011022011, 121212121121212121, 1000000002000000001, 11000000022000000011, 121000000212000000121
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A118594. - Chai Wah Wu, Jul 30 2025

References

  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 353.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[Table[Mod[Binomial[n, k], 3], {k, 0, n}]]; Array[a, 25, 0] (* Amiram Eldar, Nov 22 2018 *)
  • PARI
    a(n)=fromdigits(apply(x->x%3, binomial(n))); \\ Michel Marcus, Nov 21 2018
    
  • Python
    from math import prod, comb
    from gmpy2 import digits
    def A006940(n):
        if n==0: return 1
        c, l = '', len(s:=digits(n,3))
        for k in range(m:=n+2>>1):
            t = digits(k,3).zfill(l)
            c += str(prod(comb(int(s[i]),int(t[i]))%3 for i in range(l))%3)
        return int(c+c[m-2+(n&1)::-1]) # Chai Wah Wu, Jul 30 2025

Extensions

More terms from Michel Marcus, Nov 21 2018
Previous Showing 11-14 of 14 results.