cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A133463 Partial sums of the sequence that starts with 2 and is followed by A111575.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 12, 15, 18, 27, 36, 45, 54, 81, 108, 135, 162, 243, 324, 405, 486, 729, 972, 1215, 1458, 2187, 2916, 3645, 4374, 6561, 8748, 10935, 13122, 19683, 26244, 32805, 39366, 59049, 78732, 98415, 118098, 177147, 236196, 295245, 354294
Offset: 0

Views

Author

Paul Curtz, Nov 28 2007

Keywords

Programs

  • Maple
    A111575 := proc(n) 3^(floor(n/4)) ; end: A133463 := proc(n) 2+add( A111575(i),i=0..n-1) ; end: seq(A133463(n),n=0..80) ; # R. J. Mathar, Jan 12 2008
  • Mathematica
    Accumulate[Join[{2},With[{pt=3^Range[0,15]},Sort[Join[pt,pt,pt,pt]]]]] (* Harvey P. Dale, Jul 21 2021 *)

Formula

a(4n) = 2*A111575(4n). a(4n+1)= 3*A111575(4n+1). a(4n+2)= 4*A111575(4n+2). a(4n+3)= 5*A111575(4n+3). - R. J. Mathar, Jan 12 2008

Extensions

Edited and extended by R. J. Mathar, Jan 12 2008

A111573 a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4, with initial terms 0,1,3,3.

Original entry on oeis.org

0, 1, 3, 3, 4, 8, 14, 21, 33, 55, 90, 144, 232, 377, 611, 987, 1596, 2584, 4182, 6765, 10945, 17711, 28658, 46368, 75024, 121393, 196419, 317811, 514228, 832040, 1346270, 2178309, 3524577, 5702887, 9227466, 14930352, 24157816, 39088169
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

See comment and FAMP code for A111569.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[n + 1] - Cos[n*Pi/2], {n, 0, 40}] (* Greg Dresden, Oct 16 2021 *)

Formula

G.f.: -x*(1+2*x)/((x^2+x-1)*(x^2+1)).
a(n) = A056594(n+3) + A000045(n+1). - R. J. Mathar, Nov 10 2009
From Greg Dresden, Jan 15 2024: (Start)
a(2*n) = Fibonacci(n)*Lucas(n+1);
a(2*n+1) = Fibonacci(2*n+1). (End)

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025

A127975 Repeat 3^n three times.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 9, 27, 27, 27, 81, 81, 81, 243, 243, 243, 729, 729, 729, 2187, 2187, 2187, 6561, 6561, 6561, 19683, 19683, 19683, 59049, 59049, 59049, 177147, 177147, 177147, 531441, 531441, 531441, 1594323, 1594323, 1594323, 4782969, 4782969, 4782969
Offset: 0

Views

Author

Paul Barry, Feb 09 2007

Keywords

Comments

a(n) is the number of functions f:[n+1]->[3] with f(1)=1 and with f(x)=f(y) whenever y=ceiling(x/3). - Dennis P. Walsh, Sep 06 2018

Examples

			a(6)=9 since there are exactly 9 functions f:[7]->[3], denoted by <f(1),f(2),...,f(7)>, with f(1)=1 and with f(x)=f(y) whenever y=ceiling(x/3). The nine functions are <1,1,1,1,1,1,1>, <1,1,1,1,1,1,2>, <1,1,1,1,1,1,3>, <1,1,1,2,2,2,1>, <1,1,1,2,2,2,2>, <1,1,1,2,2,2,3>, <1,1,1,3,3,3,1>, <1,1,1,3,3,3,2>, and <1,1,1,3,3,3,3>. - _Dennis P. Walsh_, Sep 06 2018
		

Crossrefs

Programs

Formula

G.f.: (1+x+x^2)/(1-3*x^3).

Extensions

Edited and corrected by R. J. Mathar, Jun 14 2008

A111572 a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4, with initial terms -1,3,2,1.

Original entry on oeis.org

-1, 3, 2, 1, 3, 8, 11, 15, 26, 45, 71, 112, 183, 299, 482, 777, 1259, 2040, 3299, 5335, 8634, 13973, 22607, 36576, 59183, 95763, 154946, 250705, 405651, 656360, 1062011, 1718367, 2780378, 4498749, 7279127, 11777872, 19056999, 30834875, 49891874, 80726745
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

See comment and FAMP code for A111569.
Floretion Algebra Multiplication Program, FAMP Code: 4ibaseseq[B+H] with B = - .25'i + .25'j - .25i' + .25j' + k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and H = + .75'ii' + .75'jj' + .75'kk' + .75e
From Greg Dresden and Jiaqi Wang, Jun 24 2023: (Start)
For n >= 5, a(n) is also the number of ways to tile this "central staircase" figure of length n-2 with squares and dominoes. This is the picture for length 9; there are a(11)=112 ways to tile it:
_
|||_|||_|||_|
|_| (End)

Crossrefs

Formula

G.f.: (1-4*x+x^2)/((1+x^2)*(x^2+x-1))
From Greg Dresden and Jiaqi Wang, Jun 24 2023: (Start)
a(2*n) = F(n+1)*L(n-1) + F(n)*F(n-1),
a(2*n+1) = F(n+1)*(F(n+1) + 2*F(n-1)), for F(n) and L(n) the Fibonacci and Lucas numbers.
(End)

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025

A111574 a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4, with initial terms 1,-1,2,3.

Original entry on oeis.org

1, -1, 2, 3, 3, 4, 9, 15, 22, 35, 59, 96, 153, 247, 402, 651, 1051, 1700, 2753, 4455, 7206, 11659, 18867, 30528, 49393, 79919, 129314, 209235, 338547, 547780, 886329, 1434111, 2320438, 3754547, 6074987, 9829536, 15904521, 25734055, 41638578, 67372635
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

See comment and FAMP code for A111569.
Floretion Algebra Multiplication Program, FAMP Code: -4baseiseq[B+H] with B = - .25'i + .25'j - .25i' + .25j' + k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and H = + .75'ii' + .75'jj' + .75'kk' + .75e

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,1},{1,-1,2,3},40] (* Harvey P. Dale, Jan 24 2017 *)

Formula

G.f.: (-1+2*x-3*x^2)/((x^2+x-1)*(x^2+1)).

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.
Showing 1-6 of 6 results.