cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A111575 Powers of 3 repeated four times.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27, 81, 81, 81, 81, 243, 243, 243, 243, 729, 729, 729, 729, 2187, 2187, 2187, 2187, 6561, 6561, 6561, 6561, 19683, 19683, 19683, 19683, 59049, 59049, 59049, 59049, 177147, 177147, 177147, 177147, 531441
Offset: 0

Views

Author

Jeremy Gardiner, Nov 17 2005

Keywords

Comments

Generating sequence for the number of 0's and 1's (run lengths) in the parity of A006072, A111065 and A118594.

Examples

			a(10) = 3^floor(10/4) = 3^2 = 9.
		

Crossrefs

Programs

Formula

a(n) = 3^floor(n/4).
O.g.f.: -(1+x)*(1+x^2)/(-1+3*x^4). - R. J. Mathar, Jan 08 2008

A127974 Numerators in expansion of (1-x)^(-2/3).

Original entry on oeis.org

1, 2, 5, 40, 110, 308, 2618, 7480, 21505, 559130, 1621477, 4717024, 41273960, 120646960, 353323240, 3109244512, 9133405754, 26862958100, 711868389650, 2098138411600, 6189508314220, 54821359354520, 161972198092900
Offset: 0

Views

Author

Paul Barry, Feb 09 2007

Keywords

Comments

Numerators of n!/A008544(n) are A127975.

Crossrefs

Programs

  • Mathematica
    Numerator[CoefficientList[Series[(1 - x)^(-2/3), {x, 0, 50}], x]] (* G. C. Greubel, May 07 2018 *)

Formula

a(n) = denominator(n!/A008544(n)).
a(n) = denominator(n!/(Product_{k=0..n-1} (2+3*k))).
Conjecture: a(n-1) = the numerator of (1/(2*sqrt(3)*Pi)) * Integral_{x >= 0} 1/(1 + x^3)^n. - Peter Bala, Jun 11 2024

A371636 For any number k >= 0, let T_k be the triangle with values in {-1, 0, +1} whose base corresponds to the balanced ternary expansion of k (without leading zeros) and other values, say t above u and v, satisfy t+u+v = 0 mod 3; this sequence lists the numbers k such that T_k has 3-fold rotational symmetry.

Original entry on oeis.org

0, 1, 4, 13, 19, 25, 40, 103, 112, 121, 154, 214, 364, 442, 505, 595, 673, 763, 826, 913, 1003, 1093, 1144, 1369, 1621, 1915, 2167, 2392, 2776, 3028, 3280, 3628, 4420, 4996, 5668, 6244, 7036, 8203, 9022, 9841, 10459, 10594, 11782, 12304, 13411, 13627, 14419
Offset: 1

Views

Author

Rémy Sigrist, Mar 30 2024

Keywords

Comments

This sequence is a variant of A334556 and A361818.
This sequence is infinite as it contains A003462.
Empirically, for any w > 0, there are A127975(w-1) terms with w balanced ternary digits (ignoring leading zeros).
If k is a term then A338246(k) is also a term.

Examples

			The balanced ternary expansion of 595 is "1T11001" (where T denotes -1), and the corresponding triangle T_595 is as follows:
           1
          T 0
         1 0 0
        1 1 T 1
       0 T 0 1 1
      0 0 1 T 0 T
     1 T 1 1 0 0 1
As this triangle has 3-fold rotational symmetry, 595 belongs to the sequence.
		

Crossrefs

Programs

  • PARI
    \\ See Links section.

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A335259 Triangle read by rows: T(n,k) = k^ceiling(n/k) for 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 4, 9, 4, 1, 8, 9, 16, 5, 1, 8, 9, 16, 25, 6, 1, 16, 27, 16, 25, 36, 7, 1, 16, 27, 16, 25, 36, 49, 8, 1, 32, 27, 64, 25, 36, 49, 64, 9, 1, 32, 81, 64, 25, 36, 49, 64, 81, 10, 1, 64, 81, 64, 125, 36, 49, 64, 81, 100, 11, 1, 64, 81, 64, 125, 36, 49, 64, 81, 100, 121, 12
Offset: 1

Views

Author

Dennis P. Walsh, May 28 2020

Keywords

Comments

T(n,k) is the number of functions f:[n]->[k] such that f(x)=f(y) whenever i*k-k+1<=x<=y<=i*k where 1<=i<=ceiling(n/k). An example of such a function is f:[8]->[3] defined by f(1)=f(2)=f(3)=2, f(4)=f(5)=f(6)=3, and f(7)=f(8)=2. To count all functions of this type when n=8 and k=3, we note that there are 3 possible values for f(1), f(4), and f(7). Hence T(8,3)=3^3 or, equivalently, 3^ceiling(8/3). A proof of the general result follows the same approach. We also note the following: (i) T(n,1)=1 for all n; (ii) T(n,n)=n for all n; T(n,k)=k^2 when ceiling(n/2)<=k

Examples

			Triangle T(n,k):
  1;
  1,  2;
  1,  4,  3;
  1,  4,  9,  4;
  1,  8,  9, 16,  5;
  1,  8,  9, 16, 25,  6;
  1, 16, 27, 16, 25, 36,  7;
  1, 16, 27, 16, 25, 36, 49,  8;
  1, 32, 27, 64, 25, 36, 49, 64,  9;
  1, 32, 81, 64, 25, 36, 49, 64, 81, 10;
...
T(8,3) counts the 27 functions from [8] to [3] where f(1)=f(2)=f(3), f(4)=f(5)=f(6), and f(7)=f(8). Letting f be defined by its vector of images <f(1), ...,f(8)>, the 27 functions are <1,1,1,1,1,1,1,1>, <1,1,1,1,1,1,2,2>, <1,1,1,1,1,1,3,3>, <1,1,1,2,2,2,1,1>, <1,1,1,2,2,2,2,2>, <1,1,1,2,2,2,3,3>, <1,1,1,3,3,3,1,1>, <1,1,1,3,3,3,2,2>, <1,1,1,3,3,3,3,3>, <2,2,2,1,1,1,1,1>, <2,2,2,1,1,1,2,2>, <2,2,2,1,1,1,3,3>, <2,2,2,2,2,2,1,1>, <2,2,2,2,2,2,2,2>, <2,2,2,2,2,2,3,3>, <2,2,2,3,3,3,1,1>, <2,2,2,3,3,3,2,2>, <2,2,2,3,3,3,3,3>, <3,3,3,1,1,1,1,1>, <3,3,3,1,1,1,2,2>, <3,3,3,1,1,1,3,3>, <3,3,3,2,2,2,1,1>, <3,3,3,2,2,2,2,2>, <3,3,3,2,2,2,3,3>, <3,3,3,3,3,3,1,1>, <3,3,3,3,3,3,2,2>, and <3,3,3,3,3,3,3,3>.
		

Crossrefs

Programs

  • Maple
    seq(seq(k^ceil(n/k),k=1..n),n=1..20);
  • Mathematica
    Table[k^Ceiling[n/k], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Jun 28 2020 *)

Formula

G.f. for fixed k: k*x^k*(1+k*x+k*x^2+...+k*x^(k-1))/(1-k*x^k).
For n>1, T(n,2) = A016116(n).
For n>2, T(n,3) = A127975(n).
Showing 1-5 of 5 results.