cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A366328 G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^4).

Original entry on oeis.org

1, 2, -7, 60, -612, 6898, -82806, 1038076, -13431940, 178040315, -2405137161, 32992706368, -458336721104, 6435090557964, -91167680664004, 1301665779507128, -18710805300530504, 270559054510943509, -3932893180646204203, 57437414168562779574, -842365843304975785062
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(n+3*k-2, n-k)/(5*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k-1,k) * binomial(n+3*k-2,n-k)/(5*k-1).

A381746 Expansion of exp( Sum_{k>=1} binomial(10*k-1,2*k) * x^k/k ).

Original entry on oeis.org

1, 36, 2586, 235884, 24284907, 2689924444, 312907382800, 37699275223260, 4663450108073401, 588854988193808392, 75589352418472567340, 9834912295258236849604, 1294095251234713917535805, 171909332777340128148714400, 23024035140764003881788203616
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, binomial(10*k-1, 2*k)*x^k/k)))

Formula

G.f. A(x) satisfies A(x^2) = B(x) * B(-x), where B(x) is the g.f. of A118971.
a(n) = Sum_{k=0..2*n} (-1)^k * A118971(k) * A118971(2*n-k).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(10*k-1,2*k) * a(n-k).
G.f.: B(x)^4, where B(x) is the g.f. of A381752.

A380553 G.f. A(x) satisfies x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).

Original entry on oeis.org

1, 3, 25, 200, 1770, 16351, 158223, 1577328, 16112031, 167708890, 1772645419, 18974340640, 205263418940, 2240623110285, 24648785800540, 272994642782048, 3041495503591364, 34064252952038769, 383302465665133013, 4331178750570145160, 49126274119206904221, 559128033687856289017
Offset: 1

Views

Author

Paul D. Hanna, Feb 16 2025

Keywords

Comments

Moebius transform of A118971.

Examples

			G.f.: A(x) = x + 3*x^2 + 25*x^3 + 200*x^4 + 1770*x^5 + 16351*x^6 + 158223*x^7 + 1577328*x^8 + 16112031*x^9 + 167708890*x^10 + ...
where x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
RELATED SERIES.
Sum_{n>=1} a(n) * x^n/(1-x^n) = x + 4*x^2 + 26*x^3 + 204*x^4 + 1771*x^5 + 16380*x^6 + 158224*x^7 + 1577532*x^8 + ... + A118971(n)*x^(n) + ...
which equals x*F(x)^4 where F(x) = 1 + x*F(x)^5 is the g.f. of A002294.
		

Crossrefs

Programs

  • PARI
    \\ As the Moebius transform of A118971 \\
    {a(n) = sumdiv(n,d, moebius(n/d) * binomial(5*d-1,d-1)*4/(5*d-1) )}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    \\ By definition x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ) \\
    {a(n) = my(V=[0,1]); for(i=0,n, V = concat(V,0); A = Ser(V);
    V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1-x)^(4*m) +x*O(x^#V)) ),#V-1)); V[n+1]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
(2) x = Sum_{n>=1} a(n) * x^n*(1-x)^(4*n) / (1 - x^n*(1-x)^(4*n)).
(3) x*F(x)^4 = Sum_{n>=1} a(n) * x^n/(1-x^n) where F(x) = 1 + x*F(x)^5 is the g.f. of A002294.
(4) a(n) = Sum_{d|n} mu(n/d) * binomial(5*d-1,d-1)*4/(5*d-1), where mu is the Moebius function A008683.

A162382 Triangle, read by rows, defined by: T(n,k) = 1/((k+1)n-1) binomial((k+1)n-1,n) for n,k>0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 7, 3, 1, 14, 30, 15, 4, 1, 42, 143, 91, 26, 5, 1, 132, 728, 612, 204, 40, 6, 1, 429, 3876, 4389, 1771, 385, 57, 7, 1, 1430, 21318, 32890, 16380, 4095, 650, 77, 8, 1, 4862, 120175, 254475, 158224, 46376, 8184, 1015, 100, 9, 1, 16796, 690690, 2017356
Offset: 1

Views

Author

Aminul Huq (aminul(AT)brandeis.edu), Jul 02 2009

Keywords

Comments

T(n,k) counts number of lattice paths with steps (1,k) and (1,-1) starting at the origin and ending at height 1 with i vertices on or below the x-axis for i=1,2,...,(r+1)n-1. For k=1, T(n,1) are the Catalan numbers A000108, k=2 gives the sequence A006013, k=3 gives the sequence A006632, k=4 gives the sequence A118971, etc.

Crossrefs

Programs

  • Mathematica
    TableForm[ Table[1/((k + 1) n - 1) Binomial[(k + 1) n - 1, n], {k, 1, 10}, {n, 1, 10}]]

Formula

Satisfies xf^k(x)=1-f^{-1}(x). Can also be written as T(n,k) = 1/n binomial((k+1)n-2,n-1) = 1/(kn-1) binomial((k+1)n-2,n)

A370844 Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^4 + x) ).

Original entry on oeis.org

1, 5, 35, 295, 2760, 27556, 287564, 3098780, 34216020, 385106280, 4401850866, 50957904938, 596231618166, 7039674475190, 83767631913840, 1003564049999916, 12094813260406732, 146534778450346908, 1783695235540931924, 21803615393276536720, 267537602528379374851
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^4+x))/x)
    
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(5*k+3, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A118971(k).
a(n) = hypergeom([4/5, 6/5, 7/5, 8/5, -n], [5/4, 3/2, 7/4, 2], -3125/256). - Stefano Spezia, Mar 03 2024

A349023 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^2.

Original entry on oeis.org

1, 2, 11, 64, 417, 2892, 20941, 156500, 1198049, 9346690, 74042938, 594001236, 4815995027, 39399831458, 324840184326, 2696343599336, 22514057175337, 188977375146888, 1593661234493561, 13495942411592260, 114723671513478118, 978570384358686064
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=4, t=2) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).

A349024 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^3.

Original entry on oeis.org

1, 3, 18, 124, 951, 7764, 66200, 582594, 5252133, 48254668, 450186720, 4253328540, 40612877001, 391300954065, 3799506069816, 37142836241690, 365255937037437, 3610755090793272, 35861607622930556, 357670540310182842, 3580797575489620740
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=4, t=3) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).

A379187 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x))^3).

Original entry on oeis.org

1, 4, 30, 286, 3091, 36063, 442898, 5642628, 73893561, 988585443, 13453580815, 185661101085, 2592069904059, 36545520229810, 519601325300487, 7441580996167052, 107255985242888943, 1554576968046707916, 22644622298400113411, 331322620547205661043
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(4*n+2*k+2, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(4*n+2*k+2,n-k)/(n+2*k+1).

A386392 a(n) = 4 * binomial(7*n+4,n)/(7*n+4).

Original entry on oeis.org

1, 4, 34, 368, 4495, 59052, 814506, 11633440, 170574723, 2552698720, 38832808586, 598724403680, 9335085772194, 146936230074004, 2331703871687400, 37263447339612480, 599206511767593099, 9688121925389895636, 157401957319775436400, 2568427016865897264000
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2025

Keywords

Crossrefs

Programs

  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n, 7, 4);

Formula

a(n) = r * binomial(n*p+r,n)/(n*p+r), the Fuss-Catalan number with p=7 and r=4.
a(n) = A386380(6*n+3).
G.f. A(x) satisfies A(x) = (1 + x*A(x)^(p/r))^r, where p=7, r=4.
G.f.: B(x)^4, where B(x) is the g.f. of A002296.

A386558 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 14, 0, 1, 5, 26, 91, 143, 42, 0, 1, 6, 40, 204, 612, 728, 132, 0, 1, 7, 57, 385, 1771, 4389, 3876, 429, 0, 1, 8, 77, 650, 4095, 16380, 32890, 21318, 1430, 0, 1, 9, 100, 1015, 8184, 46376, 158224, 254475, 120175, 4862, 0
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,      1,      1,       1, ...
  0,   1,    2,     3,      4,      5,       6, ...
  0,   2,    7,    15,     26,     40,      57, ...
  0,   5,   30,    91,    204,    385,     650, ...
  0,  14,  143,   612,   1771,   4095,    8184, ...
  0,  42,  728,  4389,  16380,  46376,  109668, ...
  0, 132, 3876, 32890, 158224, 548340, 1533939, ...
		

Crossrefs

Columns k=0..10 give A000007, A000108, A006013, A006632, A118971, A130564(n+1), A130565(n+1), A234466, A234513, A234573, A235340.
Main diagonal gives A177784(n+1).
Cf. A162382.

Programs

  • PARI
    a(n, k) = binomial((k+1)*n+k-1, n)/(n+1);

Formula

For k > 0, A(n,k) = r * binomial(n*p+r,n)/(n*p+r), the Fuss-Catalan number with p=k+1 and r=k.
G.f. of column k: (1/x) Series_Reverion( x*(1-x)^k ).
Previous Showing 21-30 of 30 results.