A366328
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^4).
Original entry on oeis.org
1, 2, -7, 60, -612, 6898, -82806, 1038076, -13431940, 178040315, -2405137161, 32992706368, -458336721104, 6435090557964, -91167680664004, 1301665779507128, -18710805300530504, 270559054510943509, -3932893180646204203, 57437414168562779574, -842365843304975785062
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(n+3*k-2, n-k)/(5*k-1));
A381746
Expansion of exp( Sum_{k>=1} binomial(10*k-1,2*k) * x^k/k ).
Original entry on oeis.org
1, 36, 2586, 235884, 24284907, 2689924444, 312907382800, 37699275223260, 4663450108073401, 588854988193808392, 75589352418472567340, 9834912295258236849604, 1294095251234713917535805, 171909332777340128148714400, 23024035140764003881788203616
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, binomial(10*k-1, 2*k)*x^k/k)))
A380553
G.f. A(x) satisfies x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
Original entry on oeis.org
1, 3, 25, 200, 1770, 16351, 158223, 1577328, 16112031, 167708890, 1772645419, 18974340640, 205263418940, 2240623110285, 24648785800540, 272994642782048, 3041495503591364, 34064252952038769, 383302465665133013, 4331178750570145160, 49126274119206904221, 559128033687856289017
Offset: 1
G.f.: A(x) = x + 3*x^2 + 25*x^3 + 200*x^4 + 1770*x^5 + 16351*x^6 + 158223*x^7 + 1577328*x^8 + 16112031*x^9 + 167708890*x^10 + ...
where x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
RELATED SERIES.
Sum_{n>=1} a(n) * x^n/(1-x^n) = x + 4*x^2 + 26*x^3 + 204*x^4 + 1771*x^5 + 16380*x^6 + 158224*x^7 + 1577532*x^8 + ... + A118971(n)*x^(n) + ...
which equals x*F(x)^4 where F(x) = 1 + x*F(x)^5 is the g.f. of A002294.
-
\\ As the Moebius transform of A118971 \\
{a(n) = sumdiv(n,d, moebius(n/d) * binomial(5*d-1,d-1)*4/(5*d-1) )}
for(n=1,30,print1(a(n),", "))
-
\\ By definition x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ) \\
{a(n) = my(V=[0,1]); for(i=0,n, V = concat(V,0); A = Ser(V);
V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1-x)^(4*m) +x*O(x^#V)) ),#V-1)); V[n+1]}
for(n=1,30,print1(a(n),", "))
A162382
Triangle, read by rows, defined by: T(n,k) = 1/((k+1)n-1) binomial((k+1)n-1,n) for n,k>0.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 7, 3, 1, 14, 30, 15, 4, 1, 42, 143, 91, 26, 5, 1, 132, 728, 612, 204, 40, 6, 1, 429, 3876, 4389, 1771, 385, 57, 7, 1, 1430, 21318, 32890, 16380, 4095, 650, 77, 8, 1, 4862, 120175, 254475, 158224, 46376, 8184, 1015, 100, 9, 1, 16796, 690690, 2017356
Offset: 1
Aminul Huq (aminul(AT)brandeis.edu), Jul 02 2009
-
TableForm[ Table[1/((k + 1) n - 1) Binomial[(k + 1) n - 1, n], {k, 1, 10}, {n, 1, 10}]]
A370844
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^4 + x) ).
Original entry on oeis.org
1, 5, 35, 295, 2760, 27556, 287564, 3098780, 34216020, 385106280, 4401850866, 50957904938, 596231618166, 7039674475190, 83767631913840, 1003564049999916, 12094813260406732, 146534778450346908, 1783695235540931924, 21803615393276536720, 267537602528379374851
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^4+x))/x)
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(5*k+3, k)/(k+1));
A349023
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^2.
Original entry on oeis.org
1, 2, 11, 64, 417, 2892, 20941, 156500, 1198049, 9346690, 74042938, 594001236, 4815995027, 39399831458, 324840184326, 2696343599336, 22514057175337, 188977375146888, 1593661234493561, 13495942411592260, 114723671513478118, 978570384358686064
Offset: 0
-
a(n, s=4, t=2) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
A349024
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^3.
Original entry on oeis.org
1, 3, 18, 124, 951, 7764, 66200, 582594, 5252133, 48254668, 450186720, 4253328540, 40612877001, 391300954065, 3799506069816, 37142836241690, 365255937037437, 3610755090793272, 35861607622930556, 357670540310182842, 3580797575489620740
Offset: 0
-
a(n, s=4, t=3) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
A379187
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x))^3).
Original entry on oeis.org
1, 4, 30, 286, 3091, 36063, 442898, 5642628, 73893561, 988585443, 13453580815, 185661101085, 2592069904059, 36545520229810, 519601325300487, 7441580996167052, 107255985242888943, 1554576968046707916, 22644622298400113411, 331322620547205661043
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(4*n+2*k+2, n-k)/(n+2*k+1));
A386392
a(n) = 4 * binomial(7*n+4,n)/(7*n+4).
Original entry on oeis.org
1, 4, 34, 368, 4495, 59052, 814506, 11633440, 170574723, 2552698720, 38832808586, 598724403680, 9335085772194, 146936230074004, 2331703871687400, 37263447339612480, 599206511767593099, 9688121925389895636, 157401957319775436400, 2568427016865897264000
Offset: 0
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n, 7, 4);
A386558
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 14, 0, 1, 5, 26, 91, 143, 42, 0, 1, 6, 40, 204, 612, 728, 132, 0, 1, 7, 57, 385, 1771, 4389, 3876, 429, 0, 1, 8, 77, 650, 4095, 16380, 32890, 21318, 1430, 0, 1, 9, 100, 1015, 8184, 46376, 158224, 254475, 120175, 4862, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 7, 15, 26, 40, 57, ...
0, 5, 30, 91, 204, 385, 650, ...
0, 14, 143, 612, 1771, 4095, 8184, ...
0, 42, 728, 4389, 16380, 46376, 109668, ...
0, 132, 3876, 32890, 158224, 548340, 1533939, ...
Columns k=0..10 give
A000007,
A000108,
A006013,
A006632,
A118971,
A130564(n+1),
A130565(n+1),
A234466,
A234513,
A234573,
A235340.
Comments