cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A361487 Odd numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

75, 135, 147, 189, 225, 245, 363, 375, 405, 441, 507, 525, 567, 605, 675, 735, 825, 845, 847, 867, 875, 891, 945, 975, 1029, 1053, 1083, 1089, 1125, 1183, 1215, 1225, 1275, 1323, 1375, 1377, 1425, 1445, 1485, 1521, 1539, 1575, 1587, 1617, 1625, 1701, 1715, 1725, 1755, 1805, 1815, 1859, 1863, 1875, 1911
Offset: 1

Views

Author

Michael De Vlieger, Mar 29 2023

Keywords

Comments

Odd terms in A360768, which itself is a proper subsequence of A126706.
Odd numbers k such that there exists j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 75, since 75/15 >= 5. We note that rad(45) = rad(75) = 15, yet 45 does not divide 75.
a(2) = 135, since 135/15 >= 5. Note: rad(75) = rad(135) = 15, yet 45 does not divide 135.
a(3) = 147, since 147/21 >= 7. Note: rad(63) = rad(147) = 21, yet 147 mod 63 = 21.
Chart below shows k < a(n) such that rad(k) = rad(n), yet k does not divide n:
      75 | 45   .
     135 |  .   .  75   .   .
     147 |  .  63   .   .   .   .
     189 |  .   .   .   .   .   . 147   .   .   .
a(n) 225 |  .   .   .   .   . 135   .   .   .   .   .   .
     245 |  .   .   .   .   .   .   .   .   . 175   .   .   .
     363 |  .   .   .  99   .   .   .   .   .   .   .   .   .   .   .   .   . 297
     375 | 45   .   .   .   . 135   .   .   .   .   .   . 225   .   .   .   .   .
     ----------------------------------------------------------------------------
         | 45  63  75  99 117 135 147 153 171 175 189 207 225 245 261 275 279 297
                                        k in A360769
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1, 2000, 2], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]
  • PARI
    is(k) = { if (k%2, my (f = factor(k)); #f~ > 1 && k/vecprod(f[,1]~) >= f[2, 1], 0); } \\ Rémy Sigrist, Mar 29 2023

Formula

This sequence is { odd k in A126706 : k/A007947(k) >= A119288(k) }.

A367708 Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).

Original entry on oeis.org

50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1

Views

Author

Michael De Vlieger, Feb 09 2024

Keywords

Comments

Does not contain 3-smooth numbers.
Contains neither A168263 nor A367511.
Conjecture: contains most highly composite numbers.

Examples

			Let q = A053669(k) and let p = A119288(k).
For s = 10, we have {50, 80}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 10*{ max(5, 3) <= m < 10 : rad(m) | 10 }
   = 10*{5, 8} = {50, 80}.
For s = 15, we have {45, 135}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 15*{ max(5, 2) <= m < 15 : rad(m) | 15 }
   = 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
For s = 30, we have {45, 135}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 30*{ max(3, 7) <= m < 30 : rad(m) | 30 }
   = 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27}
   = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
		

Crossrefs

Programs

  • Mathematica
    nn = 756;
    Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &],
      And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@
        {#1/#4, #2, #3, #4, #5} & @@
        {#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@
        {#, FactorInteger[#], If[OddQ[#], 2,
            q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]

Formula

Union of {k = m*s : rad(m) | s, max(p, q) <= m < s}, where s is in A120944.
{a(n)} = A364702 \ A366250.
{a(n)} = A361098 \ A341645.

A369150 Numbers k neither squarefree nor prime powers such that A053669(k) < k/rad(k) < A119288(k) that are not odd numbers of the form lpf(k)*rad(k), where lpf(k) = A020639(k) and rad(k) = A007947(k).

Original entry on oeis.org

40, 56, 88, 104, 136, 152, 176, 184, 208, 232, 248, 272, 280, 296, 297, 304, 328, 344, 351, 368, 376, 424, 440, 459, 464, 472, 488, 496, 513, 520, 536, 544, 568, 584, 592, 608, 616, 621, 632, 656, 664, 680, 688, 712, 728, 736, 752, 760, 776, 783, 808, 824, 837
Offset: 1

Views

Author

Michael De Vlieger, Jan 20 2024

Keywords

Comments

Numbers k neither squarefree nor prime powers such that the smallest nondivisor prime q < k/rad(k) < p, the second smallest prime factor of k where k/rad(k) != lpf(k).
Even k implies A053669(k) = 3, odd k implies A053669(k) = 2.
Sequence does not contain k divisible by 6; sequence does not meet A055932.
Proper subset of A367455.

Examples

			a(1) = 40 = 2^3 * 5, since 3 < 4 < 5 and 4 != 2.
a(2) = 56 = 2^3 * 7, since 3 < 4 < 7 and 4 != 2.
a(7) = 176 = 2^4 * 11, since 3 < 8 < 11 and 8 != 2.
a(15) = 297 = 3^3 * 11, since 2 < 9 < 11 and 9 != 3.
a(248) = 3625 = 5^3 * 29, since 2 < 25 < 29 and 25 != 5, etc.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Range[1000], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    Select[s,
      And[#3 < #1 < #2, #1 != #4] & @@
      {#1/(Times @@ #2), #2[[2]], #3, First[#2]} & @@
      {#, FactorInteger[#][[All, 1]],
        If[OddQ[#], 2, q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]

Formula

This sequence is { A364997 \ A366460 } = { A364997 \ A366825 }.

A369690 a(n) = max(A119288(n), A053669(n)).

Original entry on oeis.org

2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 5, 2, 7, 5, 3, 2, 5, 2, 5, 7, 11, 2, 5, 2, 13, 2, 7, 2, 7, 2, 3, 11, 17, 7, 5, 2, 19, 13, 5, 2, 5, 2, 11, 5, 23, 2, 5, 2, 5, 17, 13, 2, 5, 11, 7, 19, 29, 2, 7, 2, 31, 7, 3, 13, 5, 2, 17, 23, 5, 2, 5, 2, 37, 5, 19, 11, 5, 2, 5, 2
Offset: 1

Views

Author

Peter Munn and Michael De Vlieger, Feb 18 2024

Keywords

Comments

Equivalently, a(n) is the largest p such that p is the 2nd smallest prime dividing n or the smallest prime not dividing n.
If squarefree n is such that a(n) = p, then a(k) = p for k in the infinite sequence { k = m*n : rad(m) | n }. Consequence of the fact that both A119288(n) and A053669(n) do not depend on multiplicity of prime divisors p | n.

Examples

			Let p be the second least prime factor of n or 1 if n is a prime power, and let q be the smallest prime that does not divide n.
a(1) = 2 since max(p, q) = max(1, 2) = 2.
a(2) = 3 since max(p, q) = max(1, 3) = 3.
a(4) = 3 since max(p, q) = max(1, 3) = 3.
a(6) = 5 since max(p, q) = max(3, 5) = 5.
a(9) = 2 since max(p, q) = max(1, 2) = 2.
a(15) = 5 since max(p, q) = max(5, 2) = 5.
a(36) = 5 since max(p, q) = max(3, 5) = 5.
Generally,
a(n) = 2 for n in A061345 = union of {1} and sequences { m*p : prime p > 2, rad(m) | p }.
a(n) = 3 for n in A000079 = { 2*m : rad(m) | 2 }.
a(n) = 5 for k in { k = m*d : rad(m) | d, d in {6, 10, 15} }.
a(n) = 7 for k in { k = m*d : rad(m) | d, d in {14, 21, 30, 35} }.
a(n) = 11 for k in { k = m*d : rad(m) | d, d in {22, 33, 55, 77, 210} }, etc.
		

Crossrefs

Cf. A000079, A002110, A003557, A007947, A024619, A053669, A061345, A096015 (smallest instead of 2nd smallest), A100484, A119288, A246547, A361098.

Programs

  • Mathematica
    {2}~Join~Array[If[PrimePowerQ[#],
      q = 2; While[Divisible[#, q], q = NextPrime[q]]; q,
      q = 2; While[Divisible[#, q], q = NextPrime[q]];
        Max[FactorInteger[#][[2, 1]], q]] &, 120, 2]

Formula

a(n) <= A003557(n) for n > 4 in A246547 and for n in A361098.
Numbers n that set records include 1, 2, and squarefree semiprimes, i.e., (A100484 \ {4}) U {1, 2}.

A370454 a(n) = 1 + ceiling((log q)/(log p)), where p = A020639(s) and q = A119288(s) is the second smallest distinct prime factor of squarefree composite s = A120944(n).

Original entry on oeis.org

3, 4, 4, 3, 3, 5, 5, 3, 4, 6, 3, 6, 4, 3, 6, 4, 3, 4, 6, 6, 3, 3, 4, 4, 7, 3, 3, 7, 3, 7, 5, 3, 5, 7, 3, 3, 3, 7, 4, 5, 3, 3, 7, 3, 7, 5, 5, 4, 3, 8, 3, 5, 8, 3, 4, 8, 4, 4, 8, 5, 3, 3, 8, 4, 3, 5, 8, 4, 5, 4, 3, 3, 4, 8, 3, 5, 8, 3, 4, 8, 3, 3, 5, 8, 4, 3, 8
Offset: 1

Views

Author

Michael De Vlieger, Feb 18 2024

Keywords

Examples

			Let b(n) = A120944(n).
a(1) = 3 since b(1) = 6, p = 2, and q = 3; 1 + Ceiling(log 3/log 2) = 3.
  For s = 6, { k = m*s : rad(m) | s } = A003586 begins {1, 2, 3, 4, 6, ...};
  there are 2 powers of 2 before q = 3 so c(6) = 2 = a(1) - 1.
a(2) = 4 since b(2) = 10, p = 2, and q = 5; 1 + Ceiling(log 5/log 2) = 4.
  For s = 10, { k = m*s : rad(m) | s } = A003592 begins {1, 2, 4, 5, 8, 10, ...};
  there are 3 powers of 2 before q = 5 so c(10) = 3 = a(2) - 1.
a(6) = 5 since b(6) = 22, p = 2, and q = 11; 1 + Ceiling(log 11/log 2) = 5.
  For s = 22, { k = m*s : rad(m) | s } = A003596 begins {1, 2, 4, 8, 11, ...};
  there are 4 powers of 2 before q = 11 so c(22) = 4 = a(6) - 1, etc
		

Crossrefs

Programs

  • Mathematica
    Map[1 + Ceiling[Log[##]] & @@ FactorInteger[#][[1 ;; 2, 1]] &, Select[Range[300], And[CompositeQ[#], SquareFreeQ[#]] &]]

Formula

Let c(s) be the number of powers p^m of p = lpf(s) = A020639(s) that precede q = A119288(s) in the sequence { k = m*s : rad(m) | s }, where rad(n) = A007947(n).
a(n) = 1 + c(A120944(n)).

A380473 Numbers k neither squarefree nor prime power (i.e., in A126706) such that A119288(k) <= A003557(k) < A053669(k) < A006530(k).

Original entry on oeis.org

126, 168, 198, 234, 264, 306, 312, 342, 408, 414, 456, 522, 552, 558, 666, 696, 738, 744, 774, 846, 888, 954, 984, 990, 1032, 1062, 1098, 1128, 1170, 1206, 1272, 1278, 1314, 1320, 1386, 1416, 1422, 1464, 1494, 1530, 1560, 1602, 1608, 1638, 1650, 1704, 1710, 1746
Offset: 1

Views

Author

Michael De Vlieger, Jul 22 2025

Keywords

Comments

Let rad = A007947, p = A119288, q = A053669, g = A006530, and r = A003557.
Numbers k in A126706 such that p <= r < q < g.
Terms are products k of a number s in A033845 and a number t in A007310 with at least one prime power factor p^m | k such that m > 1.

Examples

			Table of n, a(n) for select n:
   n    a(n)                       r   q
  --------------------------------------
   1    126 = 2 * 3^2 * 7          3   5
   2    168 = 2^3 * 3 * 7          4   5
   3    198 = 2 * 3^2 * 11         3   5
   4    234 = 2 * 3^2 * 13         3   5
   5    264 = 2^3 * 3 * 11         4   5
   6    306 = 2 * 3^2 * 17         3   5
   7    312 = 2^3 * 3 * 13         4   5
  24    990 = 2 * 3^2 * 5 * 11     3   7
  29   1170 = 2 * 3^2 * 5 * 13     3   7
  45   1650 = 2 * 3 * 5^2 * 11     5   7
  57   1980 = 2^2 * 3^2 * 5 * 11   6   7
  68   2340 = 2^2 * 3^2 * 5 * 13   6   7
		

Crossrefs

Programs

  • Mathematica
    a053669[x_] := Block[{q = 2}, While[Divisible[x, q], q = NextPrime[q] ]; q];
    s = Select[Range[2^12], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
    Select[s, And[#3 < #4 < #2[[-1, 1]], #2[[2, 1]] <= #3] & @@
      {#1, #2, #1/Apply[Times, #2[[All, 1]]], a053669[#1]} & @@
      {#, FactorInteger[#]} &]

Formula

Intersection of A364998 and A080259 = A364998 \ A055932 = A364998 \ A369540.

A010055 1 if n is a prime power p^k (k >= 0), otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

Characteristic function of unit or prime powers p^k (k >= 1). Characteristic function of prime powers p^k (k >= 0). - Daniel Forgues, Mar 03 2009
See A065515 for partial sums. - Reinhard Zumkeller, Nov 22 2009

Crossrefs

Cf. A069513 (1 if n is a prime power p^k (k >= 1), else 0.)
Cf. A268340.
Cf. A100995.

Programs

  • Haskell
    a010055 n = if a001221 n <= 1 then 1 else 0
    -- Reinhard Zumkeller, Nov 28 2015, Mar 19 2013, Nov 17 2011
    
  • Maple
    A010055 := proc(n)
        if n =1 then
            1;
        else
            if nops(ifactors(n)[2]) = 1 then
                1;
            else
                0 ;
            end if;
        end if;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    A010055[n_]:=Boole[PrimeNu[n]<=1]; A010055/@Range[20] (* Enrique Pérez Herrero, May 30 2011 *)
    {1}~Join~Table[Boole@ PrimePowerQ@ n, {n, 2, 105}] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    for(n=1,120,print1(omega(n)<=1,","))
    
  • Python
    from sympy import primefactors
    def A010055(n): return int(len(primefactors(n)) <= 1) # Chai Wah Wu, Mar 31 2023

Formula

Dirichlet generating function: 1 + ppzeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k>=1} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s-1) = Sum_{k>=1} primezeta(k*s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = 0^(A119288(n)-1). - Reinhard Zumkeller, May 13 2006
a(A000961(n)) = 1; a(A024619(n)) = 0. - Reinhard Zumkeller, Nov 17 2011
a(n) = if A001221(n) <= 1 then 1, otherwise 0. - Reinhard Zumkeller, Nov 28 2015
If n >= 2, a(n) = A069513(n). - Jeppe Stig Nielsen, Feb 02 2016
Conjecture: a(n) = (n - A048671(n))/A000010(n) for all n > 1. - Velin Yanev, Mar 10 2021 [The conjecture is true. - Andrey Zabolotskiy, Mar 11 2021]

Extensions

More terms from Charles R Greathouse IV, Mar 12 2008
Edited by Daniel Forgues, Mar 02 2009
Comment re Galois fields moved to A069513 by Franklin T. Adams-Watters, Nov 02 2009

A119313 Numbers with a prime as third-smallest divisor.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 42, 45, 46, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 72, 74, 75, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Comments

m is a term iff A001221(m) > 1 and (A067029(m) = 1 or A119288(m) < A020639(m)^2).

Examples

			a(1) = A087134(3) = 6.
From _Gus Wiseman_, Oct 19 2019: (Start)
The sequence of terms together with their divisors begins:
    6: {1,2,3,6}
   10: {1,2,5,10}
   12: {1,2,3,4,6,12}
   14: {1,2,7,14}
   15: {1,3,5,15}
   18: {1,2,3,6,9,18}
   21: {1,3,7,21}
   22: {1,2,11,22}
   24: {1,2,3,4,6,8,12,24}
   26: {1,2,13,26}
   30: {1,2,3,5,6,10,15,30}
   33: {1,3,11,33}
   34: {1,2,17,34}
   35: {1,5,7,35}
   36: {1,2,3,4,6,9,12,18,36}
   38: {1,2,19,38}
   39: {1,3,13,39}
   42: {1,2,3,6,7,14,21,42}
   45: {1,3,5,9,15,45}
   46: {1,2,23,46}
(End)
		

Crossrefs

Complement of A119314.
Subsequences: A006881, A000469, A008588.
A subset of A002808 and A080257.
Numbers whose third-largest divisor is prime are A328338.
Second-smallest divisor is A020639.
Third-smallest divisor is A292269.

Programs

  • Maple
    q:= n-> (l-> nops(l)>2 and isprime(l[3]))(
             sort([numtheory[divisors](n)[]])):
    select(q, [$1..200])[];  # Alois P. Heinz, Oct 19 2019
  • Mathematica
    Select[Range[100],Length[Divisors[#]]>2&&PrimeQ[Divisors[#][[3]]]&] (* Gus Wiseman, Oct 15 2019 *)
    Select[Range[130], Length[f = FactorInteger[#]] > 1 && (f[[1, 2]] == 1 || f[[1, 1]]^2 > f[[2, 1]]) &] (* Amiram Eldar, Jul 02 2022 *)

Extensions

Name edited by Gus Wiseman, Oct 19 2019

A361098 Intersection of A360765 and A360768.

Original entry on oeis.org

36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2023

Keywords

Comments

Numbers k that are neither prime powers nor squarefree, such that rad(k) * A053669(k) < k and k/rad(k) >= A119288(k), where rad(k) = A007947(k).
Numbers k such that A360480(k), A360543(k), A361235(k), and A355432(k) are positive.
Subset of A126706. All terms are neither prime powers nor squarefree.
From Michael De Vlieger, Aug 03 2023: (Start)
Superset of A286708 = A001694 \ {{1} U A246547}, which in turn is a superset of A303606. We may write k in A286708 as m*rad(k)^2, m >= 1. Since omega(k) > 1, it is clear both k/rad(k) > A053669(k) and k/rad(k) >= A119288(k). Also superset of A359280 = A286708 \ A303606.
This sequence contains {A002182 \ A168263}. (End)

Examples

			For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
            A360543(n) = | {} | = 0,
            A361235(n) = | {4, 8, 16} | = 3,
            A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
            A360543(n) = | {30} | = 1,
            A361235(n) = | {8, 16, 27, 32} | = 4,
            A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
    n |  a + b =  c | d + e = f | g + tau + phi - 1 =  n
  ------------------------------------------------------
   36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 +  9 + 12 - 1 =  36
   48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 =  48
   50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 +  6 + 20 - 1 =  50
   54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 +  8 + 18 - 1 =  54
   72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 =  72
   75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 +  6 + 40 - 1 =  75
   80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 =  80
   96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 =  96
   98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 +  6 + 42 - 1 =  98
  100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 +  9 + 40 - 1 = 100
  108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
  112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
    s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    Reap[ Do[n = s[[j]];
        If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
          FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]

A292269 If n is 1 or a prime, then a(n) = 1, otherwise a(n) = the third smallest divisor of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 4, 9, 5, 1, 3, 1, 7, 5, 4, 1, 3, 1, 4, 7, 11, 1, 3, 25, 13, 9, 4, 1, 3, 1, 4, 11, 17, 7, 3, 1, 19, 13, 4, 1, 3, 1, 4, 5, 23, 1, 3, 49, 5, 17, 4, 1, 3, 11, 4, 19, 29, 1, 3, 1, 31, 7, 4, 13, 3, 1, 4, 23, 5, 1, 3, 1, 37, 5, 4, 11, 3, 1, 4, 9, 41, 1, 3, 17, 43, 29, 4, 1, 3, 13, 4, 31, 47, 19, 3, 1, 7, 9, 4, 1, 3, 1, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2017

Keywords

Crossrefs

Cf. A008578 (positions of ones).

Programs

  • Mathematica
    a[n_?PrimeQ] = 1; a[1] = 1; a[n_] := Divisors[n][[3]]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
  • PARI
    A292269(n) = { my(ds=divisors(n)); if(numdiv(n)<3,1,ds[3]); }
    
  • Scheme
    (define (A292269 n) (let ((x (A000290 (A020639 n))) (y (A119288 n))) (if (and (zero? (modulo n x)) (or (= 1 y) (< x y))) x y)))

Formula

If A020639(n)^2 divides n [when n is in A283050] and either A119288(n) = 1 or A020639(n)^2 < A119288(n), then a(n) = A020639(n)^2, otherwise a(n) = A119288(n).
Previous Showing 11-20 of 38 results. Next