cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A347455 Heinz numbers of integer partitions with non-integer alternating product.

Original entry on oeis.org

15, 30, 33, 35, 51, 55, 60, 66, 69, 70, 77, 85, 91, 93, 95, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 154, 155, 161, 165, 170, 177, 182, 186, 187, 190, 201, 203, 204, 205, 209, 210, 215, 217, 219, 220, 221, 231, 238, 240, 246, 247, 249
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also numbers whose multiset of prime indices has non-integer reverse-alternating product.

Examples

			The terms and their reversed prime indices begin:
     15: (3,2)        102: (7,2,1)        161: (9,4)
     30: (3,2,1)      105: (4,3,2)        165: (5,3,2)
     33: (5,2)        110: (5,3,1)        170: (7,3,1)
     35: (4,3)        119: (7,4)          177: (17,2)
     51: (7,2)        120: (3,2,1,1,1)    182: (6,4,1)
     55: (5,3)        123: (13,2)         186: (11,2,1)
     60: (3,2,1,1)    132: (5,2,1,1)      187: (7,5)
     66: (5,2,1)      135: (3,2,2,2)      190: (8,3,1)
     69: (9,2)        138: (9,2,1)        201: (19,2)
     70: (4,3,1)      140: (4,3,1,1)      203: (10,4)
     77: (5,4)        141: (15,2)         204: (7,2,1,1)
     85: (7,3)        143: (6,5)          205: (13,3)
     91: (6,4)        145: (10,3)         209: (8,5)
     93: (11,2)       154: (5,4,1)        210: (4,3,2,1)
     95: (8,3)        155: (11,3)         215: (14,3)
For example, (4,3,2,1) has alternating product 4/3*2/1 = 8/3, so the Heinz number 210 is in the sequence.
		

Crossrefs

The reciprocal version is A028983, complement A028982.
Factorizations not of this type are counted by A347437.
Partitions not of this type are counted by A347446.
The complement of the reverse reciprocal version is A347451.
The complement in the odd-length case is A347453.
The complement of the reverse version is A347454.
The complement is A347457.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A347461 counts possible alternating products of partitions, reverse A347462.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],!IntegerQ[altprod[Reverse[primeMS[#]]]]&]

A347707 Number of distinct possible integer reverse-alternating products of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 12, 14, 14, 15, 15, 18, 17, 19, 18, 20, 20, 22, 21, 25, 23, 26, 25, 28, 26, 29, 27, 31, 29, 32, 31, 34, 33, 35, 34, 38, 35, 41, 37, 42, 40, 43, 41, 45, 42, 46, 44, 48, 45, 50, 46, 52, 49, 53
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			Representative partitions for each of the a(16) = 11 alternating products:
         (16) -> 16
     (14,1,1) -> 14
     (12,2,2) -> 12
     (10,3,3) -> 10
      (8,4,4) -> 8
  (9,3,2,1,1) -> 6
     (10,4,2) -> 5
     (12,3,1) -> 4
  (6,4,2,2,2) -> 3
     (10,5,1) -> 2
        (8,8) -> 1
		

Crossrefs

The even-length version is A000035.
The non-reverse version is A028310.
The version for factorizations has special cases:
- no changes: A046951
- non-reverse: A046951
- non-integer: A038548
- odd-length: A046951 + A010052
- non-reverse non-integer: A347460
- non-integer odd-length: A347708
- non-reverse odd-length: A046951 + A010052
- non-reverse non-integer odd-length: A347708
The odd-length version is a(n) - A059841(n).
These partitions are counted by A347445, non-reverse A347446.
Counting non-integers gives A347462, non-reverse A347461.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A119620 counts partitions with alternating product 1, ranked by A028982.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A304792 counts distinct subset-sums of partitions.
A325534 counts separable partitions, complement A325535.
A345926 counts possible alternating sums of permutations of prime indices.

Programs

  • Mathematica
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[Union[revaltprod/@IntegerPartitions[n]],IntegerQ]],{n,0,30}]

A347048 Number of even-length ordered factorizations of n with integer alternating product.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 7, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 6, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 11, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 1, 1, 0, 0, 0, 6, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 8, 0, 1, 1, 7, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) ordered factorizations for n = 16, 32, 36, 48, 64, 96:
  4*4       8*4       6*6       12*4      8*8           24*4
  8*2       16*2      12*3      24*2      16*4          48*2
  2*2*2*2   2*2*4*2   18*2      2*2*6*2   32*2          3*2*8*2
            4*2*2*2   2*2*3*3   3*2*4*2   2*2*4*4       4*2*6*2
                      2*3*3*2   4*2*3*2   2*2*8*2       6*2*4*2
                      3*2*2*3   6*2*2*2   2*4*4*2       8*2*3*2
                      3*3*2*2             4*2*2*4       12*2*2*2
                                          4*2*4*2       2*2*12*2
                                          4*4*2*2
                                          8*2*2*2
                                          2*2*2*2*2*2
		

Crossrefs

Positions of 0's are A005117 \ {2}.
The restriction to powers of 2 is A027306.
Heinz numbers of partitions of this type are A028260 /\ A347457.
Positions of 3's appear to be A030514.
Positions of 1's are 1 and A082293.
Allowing non-integer alternating product gives A174725, unordered A339846.
The odd-length version is A347049.
The unordered version is A347438, reverse A347439.
Allowing any length gives A347463.
Partitions of this type are counted by A347704, reverse A035363.
A001055 counts factorizations (strict A045778, ordered A074206).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339890 counts odd-length factorizations, ordered A174726.
A347050 = factorizations with alternating permutation, complement A347706.
A347437 = factorizations with integer alternating product, reverse A347442.
A347446 = partitions with integer alternating product, reverse A347445.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[ordfacs[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347048(n, m=n, ap=1, e=0) = if(1==n,!(e%2) && 1==numerator(ap), sumdiv(n, d, if(d>1, A347048(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(n) = A347463(n) - A347049(n).

Extensions

Data section extended up to a(105) by Antti Karttunen, Jul 28 2024

A347049 Number of odd-length ordered factorizations of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 14, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 3, 15, 1, 1, 1, 3, 1, 1, 1, 24, 1, 1, 3, 3, 1, 1, 1, 14, 4, 1, 1, 7, 1, 1, 1, 5, 1, 7, 1, 3, 1, 1, 1, 24, 1, 3, 3, 11
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) ordered factorizations for n = 2, 8, 12, 16, 24, 32, 36, 48:
  2   8       12      16      24      32          36      48
      2*2*2   2*2*3   2*2*4   2*2*6   2*2*8       2*2*9   2*4*6
              3*2*2   2*4*2   3*2*4   2*4*4       2*3*6   3*2*8
                      4*2*2   4*2*3   4*2*4       2*6*3   3*4*4
                              6*2*2   4*4*2       3*2*6   4*2*6
                                      8*2*2       3*3*4   4*4*3
                                      2*2*2*2*2   3*6*2   6*2*4
                                                  4*3*3   6*4*2
                                                  6*2*3   8*2*3
                                                  6*3*2   12*2*2
                                                  9*2*2   2*2*12
                                                          2*2*2*2*3
                                                          2*2*3*2*2
                                                          3*2*2*2*2
		

Crossrefs

Positions of 2's appear to be A030078.
Positions of 3's appear to be A054753.
Positions of 1's appear to be A167207.
Allowing non-integer alternating product gives A174726, unordered A339890.
The even-length version is A347048.
The unordered version is A347441, with same reverse version.
The case of partitions is A347444, ranked by A347453.
Allowing any length gives A347463.
A001055 counts factorizations (strict A045778, ordered A074206).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A339846 counts even-length factorizations, ordered A174725.
A347050 = factorizations with alternating permutation, complement A347706.
A347437 = factorizations with integer alternating product, reverse A347442.
A347438 = factorizations with alternating product 1, on squares A273013.
A347439 = factorizations with integer reciprocal alternating product.
A347446 = partitions with integer alternating product, reverse A347445.
A347457 lists Heinz numbers of partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347708 counts possible alternating products of odd-length factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[ordfacs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347049(n, m=n, ap=1, e=0) = if(1==n,(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1, A347049(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(n) = A347463(n) - A347048(n).

Extensions

Data section extended up to a(100) by Antti Karttunen, Jul 28 2024

A348550 Heinz numbers of integer partitions whose length is 2/3 their sum, rounded down.

Original entry on oeis.org

1, 3, 6, 9, 10, 18, 20, 36, 40, 54, 56, 60, 108, 112, 120, 216, 224, 240, 324, 336, 352, 360, 400, 648, 672, 704, 720, 800, 1296, 1344, 1408, 1440, 1600, 1664, 1944, 2016, 2112, 2160, 2240, 2400, 3328, 3888, 4032, 4224, 4320, 4480, 4800, 6656, 7776, 8064, 8448
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms and their prime indices begin:
    1: {}
    3: {2}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   18: {1,2,2}
   20: {1,1,3}
   36: {1,1,2,2}
   40: {1,1,1,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  216: {1,1,1,2,2,2}
  224: {1,1,1,1,1,4}
  240: {1,1,1,1,2,3}
		

Crossrefs

The partitions with these as Heinz numbers are counted by A108711.
An adjoint version is A347452, counted by A119620.
The unrounded version is A348384, counted by A035377.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices, reverse A344616.
A344606 counts alternating permutations of prime factors.

Programs

  • Mathematica
    Select[Range[1000],Floor[2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/3]==PrimeOmega[#]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    isA348550(n) = (bigomega(n)==floor((2/3)*A056239(n))); \\ Antti Karttunen, Nov 08 2021

Formula

A001222(a(n)) = floor(2*A056239(a(n))/3).

A348384 Heinz numbers of integer partitions whose length is 2/3 their sum.

Original entry on oeis.org

1, 6, 36, 40, 216, 224, 240, 1296, 1344, 1408, 1440, 1600, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 34816, 39936, 46656, 48384, 50176, 50688, 51840, 53760, 56320, 57600, 64000, 155648, 208896, 239616, 266240, 279936, 290304, 301056, 304128, 311040, 315392
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose sum of prime indices is 3/2 their number. Counting the partitions with these Heinz numbers gives A035377(n) = A000041(n/3) if n is a multiple of 3, otherwise 0.

Examples

			The terms and their prime indices begin:
     1: {}
     6: {1,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
   216: {1,1,1,2,2,2}
   224: {1,1,1,1,1,4}
   240: {1,1,1,1,2,3}
  1296: {1,1,1,1,2,2,2,2}
  1344: {1,1,1,1,1,1,2,4}
  1408: {1,1,1,1,1,1,1,5}
  1440: {1,1,1,1,1,2,2,3}
  1600: {1,1,1,1,1,1,3,3}
  6656: {1,1,1,1,1,1,1,1,1,6}
  7776: {1,1,1,1,1,2,2,2,2,2}
		

Crossrefs

These partitions are counted by A035377.
Rounding down gives A348550 or A347452, counted by A108711 or A119620.
A000041 counts integer partitions.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime factors.

Programs

  • Mathematica
    Select[Range[1000],2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==3*PrimeOmega[#]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    isA348384(n) = (A056239(n)==(3/2)*bigomega(n)); \\ Antti Karttunen, Nov 22 2021

Formula

The sequence contains n iff A056239(n) = 3*A001222(n)/2. Here, A056239 adds up prime indices, while A001222 counts them with multiplicity.
Intersection of A028260 and A347452.

A238546 Number of partitions p of n such that floor(n/2) is not a part of p.

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 10, 17, 23, 35, 45, 66, 86, 120, 154, 209, 267, 355, 448, 585, 736, 946, 1178, 1498, 1857, 2335, 2875, 3583, 4389, 5428, 6611, 8118, 9846, 12013, 14498, 17592, 21147, 25525, 30558, 36711, 43791, 52382, 62259, 74173, 87879, 104303, 123179
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2014

Keywords

Examples

			a(6) counts all the 11 partitions of 6 except 33, 321, 3111.
		

Crossrefs

Cf. A119620.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, Floor[n/2]]], {n, 50}]

Formula

a(n) + A119620(n+1) = A000041(n), for n>1.
a(n) = p(n) - p(ceiling(n/2)) = A000041(n) - A000041(ceiling(n/2)), for n>1. - Giovanni Resta, Mar 02 2014

A348552 Number of integer partitions of n with the same alternating product as alternating sum.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 5, 7, 8, 12, 14, 19, 23, 31, 36, 46, 55, 69, 83, 100, 122, 144, 175, 203, 249, 284, 348, 393, 484, 536, 661, 725, 898, 975, 1208, 1297, 1614, 1715, 2136, 2251, 2812, 2939, 3674, 3813, 4779, 4920, 6172, 6315, 7943, 8070, 10156, 10263, 12944
Offset: 0

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. In the case of a partition, this equals the number of odd parts in the conjugate partition.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(1) = 1 through a(9) = 12 partitions:
  1   2   3     4     5       6       7         8         9
          111   211   221     42      322       332       333
                      311     222     331       422       441
                      11111   411     511       611       522
                              21111   22111     4211      711
                                      31111     22211     22221
                                      1111111   41111     32211
                                                2111111   33111
                                                          51111
                                                          2211111
                                                          3111111
                                                          111111111
For example, we have 3 - 2 + 2 - 1 + 1 = 3 / 2 * 2 / 1 * 1 = 3, so the partition (3,2,2,1,1) is counted under a(9).
		

Crossrefs

The version for reverse-alternating sum (or product, or both) is A025065.
Dominated by A347446.
A000041 counts partitions with alternating sum 0.
A027187 counts partitions of even length.
A027193 counts partitions of odd length, ranked by A026424.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A124754 gives alternating sums of standard compositions.
A277103 counts partitions with the same alternating sum as their conjugate.
A345927 gives alternating sums of binary expansions.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[#]==ats[#]&]],{n,0,30}]
Previous Showing 41-48 of 48 results.