cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A227830 Denominators of coefficients in expansion of x/(exp(x)-1).

Original entry on oeis.org

1, 2, 12, 1, 720, 1, 30240, 1, 1209600, 1, 47900160, 1, 1307674368000, 1, 74724249600, 1, 10670622842880000, 1, 5109094217170944000, 1, 802857662698291200000, 1, 14101100039391805440000, 1, 1693824136731743669452800000, 1, 186134520519971831808000000, 1, 37893265687455865519472640000000, 1, 759790291646040068357842010112000000, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 01 2013

Keywords

Examples

			1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600, 0, ...
		

References

  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.

Crossrefs

For numerators see A120082.

Programs

  • Mathematica
    Denominator[ CoefficientList[ Series[x/(1 - E^-x), {x, 0, 26}], x]] (* Robert G. Wilson v, Dec 29 2016 *)
  • Sage
    @cached_function
    def R(n): return -sum(R(k)/factorial(n-k+1) for k in (0..n-1)) if n>0 else 1
    print([R(n).denominator() for n in (0..31)]) # Peter Luschny, Jul 30 2015

Formula

Recurrence: R(0) = 1 and R(n) = - Sum_{k=0..n-1} R(k)/(n-k+1)! for n>=1. Then a(n) = denominator(R(n)). - Peter Luschny, Jul 30 2015

A358625 a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Peter Luschny, Dec 02 2022

Keywords

Comments

The rational numbers r(n) = Bernoulli(n, 1) / n are called the 'divided Bernoulli numbers'. r(n) is a p-integer for all primes p if p - 1 does not divide n. This is sometimes called 'Adams's theorem' (Ireland and Rosen). The important Kummer congruences for the Bernoulli numbers (1851) are stated in terms of the r(n).

Examples

			Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
		

References

  • Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]

Crossrefs

Programs

  • GAP
    Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
  • Magma
    [1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
    seq(A358625(n), n = 0.. 40);
    # Alternative:
    egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
    seq(numer(n! * coeff(ser, x, n)), n = 0..40);
  • Mathematica
    Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
  • PARI
    a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
    

Formula

a(n) = numerator(n! * [x^n](1 + x + log(1 - exp(-x)) - log(x))).
a(n) = numerator(-zeta(1 - n)) for n >= 1.
a(n) = numerator(Euler(n-1, 1) / (2*(2^n - 1))) for n >= 1.
denominator(r(2*n)) = A006953(n) for n >= 1.
denominator(r(2*n)) / 2 = A036283(n) for n >= 1.
denominator(r(2*n)) / 12 = A202318(n) for n >= 1.
denominator(r(2*n)) = (1/2) * A053657(2*n+1) / A053657(2*n-1) for n >= 1.

A182918 Denominators of the swinging Bernoulli number b_n.

Original entry on oeis.org

1, 2, 6, 1, 120, 1, 1512, 1, 17280, 1, 190080, 1, 1415232000, 1, 21772800, 1, 829108224000, 1, 105082151731200, 1, 4345502515200000, 1, 19989311569920000, 1, 626378114550988800000, 1, 17896517558599680000, 1, 944578196742891110400000
Offset: 0

Views

Author

Peter Luschny, Feb 03 2011

Keywords

Comments

Let zeta(n) denote the Riemann zeta function, B_n the Bernoulli numbers and let [n even] be 1 if n is even, 0 otherwise.
Then 2 zeta(n) [n even] = (2 Pi)^n | B_n | / n! for n >= 2.
Replacing in this formula the factorial of n by the swinging factorial of n (A056040) defines the 'swinging Bernoulli number' b_n.
Then 2 zeta(n) [n even] = (2 Pi)^n b_n / n$ for n >= 2.
Let additionally b_0 = 1 and b_1 = 1/2. The b_n are rational numbers like the Bernoulli numbers; unlike the Bernoulli numbers the swinging Bernoulli numbers are unsigned, bounded in the interval [0,1] and approach 0 for n -> infinity. The numerators of the swinging Bernoulli numbers b_n are abs(A120082(n)).

Examples

			1, 1/2, 1/6, 0, 1/120, 0, 1/1512, 0, 1/17280, 0, 1/190080, ..
		

Crossrefs

Cf. A120082.

Programs

  • Maple
    swbern:= proc(n) local swfact;
    swfact := n -> n!/iquo(n,2)!^2;
    if n=0 then 1 elif n=1 then 1/2 else
       if n mod 2 = 1 then 0
       else 2*Zeta(n)*swfact(n)/(2*Pi)^n fi
    fi end:
    Abs_A120082 := n -> numer(swbern(n));
    A182918 := n -> denom(swbern(n));
    seq(A182918(i),i=0..20);
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[1] = 2; a[?OddQ] = 1; a[n] := 2*Zeta[n]*sf[n]/(2*Pi)^n // Denominator; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 26 2013 *)

A227540 Denominator of the rationals obtained from the e.g.f. D(1,x), a Debye function.

Original entry on oeis.org

1, 4, 18, 1, 150, 1, 294, 1, 270, 1, 726, 1, 35490, 1, 90, 1, 8670, 1, 15162, 1, 6930, 1, 3174, 1, 68250, 1, 162, 1, 25230, 1, 443982, 1, 16830, 1, 210, 1, 71010030, 1, 234, 1, 554730, 1, 77658, 1, 31050, 1, 13254, 1, 2274090, 1, 3366, 1, 84270, 1, 43890, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 15 2013

Keywords

Comments

The numerator sequence seems to be the one of the Bernoulli numbers A027641.
D(1,x) := (1/x)*int(t/(exp(t)-1),t=0..x) which is (1/x)times the Debye function of the Abramowitz-Stegun link for n=1, is the e.g.f. for {B(k)/(k+1)}, k=0..infinity, with the Bernoulli numbers B(k) = A027641(k)/A027642(k). This follows after using the e.g.f. t/(exp(t)-1) of {B(k)} and integrating term by term (allowed for |x| <= r < rho for some small enough rho).

Crossrefs

Cf. A027641/A027642 (Bernoulli), A120082/A120083 for the rationals B(n)/(n+1)!.

Formula

a(n) = denominator(B(n)/(n+1)) (in lowest terms), n >= 0. See the comment on the e.g.f. D(1,x) above.

A341908 Decimal expansion of Integral_{x=0..1} x/(exp(x)-1) dx.

Original entry on oeis.org

7, 7, 7, 5, 0, 4, 6, 3, 4, 1, 1, 2, 2, 4, 8, 2, 7, 6, 4, 1, 7, 5, 8, 6, 5, 4, 5, 4, 2, 5, 7, 1, 0, 5, 0, 7, 1, 9, 2, 4, 7, 7, 2, 9, 6, 2, 2, 9, 0, 0, 0, 8, 6, 9, 1, 7, 9, 4, 9, 4, 5, 4, 1, 0, 6, 9, 9, 6, 6, 8, 4, 8, 8, 6, 2, 4, 9, 8, 0, 3, 7, 6, 8, 7, 7, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Examples

			0.77750463411224827641758654542571050719247729622900...
		

References

  • Alvaro Meseguer, Fundamentals of Numerical Mathematics for Physicists and Engineers, Wiley, 2020, Chapter 4, exercise 12, p. 128.
  • John Michael Rassias, Geometry, Analysis, and Mechanics, World Scientific, 1994, p. 14.

Crossrefs

Programs

  • Maple
    evalf(-dilog(exp(1))-1/2, 140);  # Alois P. Heinz, Jun 04 2021
  • Mathematica
    RealDigits[PolyLog[2, 1-1/E], 10, 100][[1]]
  • PARI
    intnum(x=0, 1, x/(exp(x)-1)) \\ Michel Marcus, Jun 04 2021

Formula

Equals D_1(1) = Sum_{k>=0} A120082(k)/A120083(k), where D_n(x) are the Debye functions.
Equals Li_2(1-1/e) = -1/2 - Li_2(1-e) = Pi^2/6 - 1 + log(e-1) - Li_2(1/e), where Li_2(x) is the dilogarithm function.
Equals Sum_{k>=0} B(k)/(k+1)! = -1/2 + Sum_{k>=0} (-1)^k*B(k)/(k+1)! = -1/4 + Sum_{k>=0} B(2*k)/(2*k+1)!, where B(k) is the k-th Bernoulli number.
Equals Sum_{k>=1} (1 - (k+1)*exp(-k))/k^2.
Previous Showing 11-15 of 15 results.