cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A373673 First element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

1, 7, 11, 13, 16, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373674.
Consists of all powers of primes k such that k-1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For composite antiruns we have A005381, max A068780, length A373403.
For prime antiruns we have A006512, max A001359, length A027833.
For composite runs we have A008864, max A006093, length A176246.
For prime runs we have A025584, max A067774, length A251092 or A175632.
For runs of prime-powers:
- length A174965
- min A373673 (this sequence)
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Min/@Split[Select[Range[100],pripow],#1+1==#2&]//Most

A373676 First element of each maximal run of non-prime-powers.

Original entry on oeis.org

1, 6, 10, 12, 14, 18, 20, 24, 26, 28, 30, 33, 38, 42, 44, 48, 50, 54, 60, 62, 65, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 129, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373677.
Consists of 1 and all non-prime-powers k such that k-1 is a power of a prime.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676 (this sequence)
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Select[Range[100],#==1||!PrimePowerQ[#]&&PrimePowerQ[#-1]&]

A373677 Last element of each maximal run of non-prime-powers.

Original entry on oeis.org

1, 6, 10, 12, 15, 18, 22, 24, 26, 28, 30, 36, 40, 42, 46, 48, 52, 58, 60, 63, 66, 70, 72, 78, 80, 82, 88, 96, 100, 102, 106, 108, 112, 120, 124, 126, 130, 136, 138, 148, 150, 156, 162, 166, 168, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373676.
Consists of all non-prime-powers k such that k+1 is a prime-power.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677 (this sequence)
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Select[Range[100],!PrimePowerQ[#]&&PrimePowerQ[#+1]&]

A373678 Sums of maximal runs of non-prime-powers.

Original entry on oeis.org

1, 6, 10, 12, 29, 18, 63, 24, 26, 28, 30, 138, 117, 42, 135, 48, 153, 280, 60, 125, 131, 207, 72, 380, 80, 82, 430, 651, 297, 102, 315, 108, 333, 819, 369, 126, 259, 670, 138, 1296, 150, 770, 800, 495, 168, 513, 880, 180, 1674, 192, 585, 198, 2255, 2387, 675
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of non-powers of primes begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

A000040 lists the primes, differences A001223.
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
See link for composite, prime, nonsquarefree, and squarefree runs.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1==#2&]//Most

A373674 Last element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

5, 9, 11, 13, 17, 19, 23, 25, 27, 29, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373673.
Consists of all powers of primes k such that k+1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For prime antiruns we have A001359, min A006512, length A027833.
For composite runs we have A006093, min A008864, length A176246.
For prime runs we have A067774, min A025584, length A251092 or A175632.
For squarefree runs we have A373415, min A072284, length A120992.
For nonsquarefree runs we have min A053806, length A053797.
For runs of prime-powers:
- length A174965
- min A373673
- max A373674 (this sequence)
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Max/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most

A375714 Positions of non-successions of consecutive non-perfect-powers. Numbers k such that the k-th non-perfect-power is at least two fewer than the next.

Original entry on oeis.org

2, 5, 11, 19, 20, 24, 27, 39, 53, 69, 87, 107, 110, 112, 127, 151, 177, 196, 204, 221, 233, 265, 299, 317, 334, 372, 412, 454, 481, 497, 543, 591, 641, 693, 747, 803, 861, 921, 959, 982, 1046, 1112, 1180, 1250, 1284, 1321, 1395, 1471, 1549, 1629, 1675, 1710
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.

Examples

			The initial non-perfect-powers are 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, which increase by more than one after term 2, term 5, term 11, etc.
		

Crossrefs

First differences are A375702.
Positions of terms > 1 in A375706 (differences of A007916).
The complement for non-prime-powers is A375713, differences A373672.
The complement is A375740.
The version for non-prime-powers is A375928, differences A110969.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    ce=Select[Range[100],radQ];
    Select[Range[Length[ce]-1],!ce[[#+1]]==ce[[#]]+1&]
  • Python
    from itertools import count, islice
    from sympy import perfect_power
    def A375714_gen(): # generator of terms
        a, b = -1, 0
        for n in count(1):
            c = not perfect_power(n)
            if c:
                a += 1
            if b&(c^1):
                yield a
            b = c
    A375714_list = list(islice(A375714_gen(),52)) # Chai Wah Wu, Sep 11 2024

Formula

A007916(a(n)+1) - A007916(a(n)) > 1.

A376340 Sorted positions of first appearances in A057820, the sequence of first differences of prime-powers.

Original entry on oeis.org

1, 4, 9, 12, 18, 24, 34, 47, 60, 79, 117, 178, 198, 206, 215, 244, 311, 402, 465, 614, 782, 1078, 1109, 1234, 1890, 1939, 1961, 2256, 2290, 3149, 3377, 3460, 3502, 3722, 3871, 4604, 4694, 6634, 8073, 8131, 8793, 12370, 12661, 14482, 14990, 15912, 17140, 19166
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    24: {1,1,1,2}
    34: {1,7}
    47: {15}
    60: {1,1,2,3}
    79: {22}
   117: {2,2,6}
   178: {1,24}
   198: {1,2,2,5}
   206: {1,27}
   215: {3,14}
   244: {1,1,18}
		

Crossrefs

For compression instead of sorted firsts we have A376308.
For run-lengths instead of sorted firsts we have A376309.
For run-sums instead of sorted firsts we have A376310.
The version for squarefree numbers is the unsorted version of A376311.
The unsorted version is A376341.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    q=Differences[Select[Range[100],PrimePowerQ]];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A375703 Minimum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

2, 5, 10, 17, 26, 28, 33, 37, 50, 65, 82, 101, 122, 126, 129, 145, 170, 197, 217, 226, 244, 257, 290, 325, 344, 362, 401, 442, 485, 513, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1001, 1025, 1090, 1157, 1226, 1297, 1332, 1370, 1445, 1522, 1601, 1682, 1729
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2024

Keywords

Comments

Non-perfect-powers A007916 are numbers without a proper integer root.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n has length A375702, first a(n), last A375704, sum A375705.
		

Crossrefs

For prime numbers we have A045344.
For nonsquarefree numbers we have A053806, anti-runs A373410.
For nonprime numbers we have A055670, anti-runs A005381.
For squarefree numbers we have A072284, anti-runs A373408.
The anti-run version is A216765 (same as A375703 with 2 exceptions).
For non-prime-powers we have A373673, anti-runs A120430.
For prime-powers we have A373676, anti-runs A373575.
For runs of non-perfect-powers (A007916):
- length: A375702 = A053289(n+1) - 1.
- first: A375703 (this)
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.
A046933 counts composite numbers between primes.
A375736 gives lengths of anti-runs of non-prime-powers, sums A375737.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Min/@Split[Select[Range[100],radQ],#1+1==#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&!radQ[#-1]&]

Formula

Numbers k > 0 such that k-1 is a perfect power (A001597) but k is not.

A375704 Maximum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

3, 7, 15, 24, 26, 31, 35, 48, 63, 80, 99, 120, 124, 127, 143, 168, 195, 215, 224, 242, 255, 288, 323, 342, 360, 399, 440, 483, 511, 528, 575, 624, 675, 728, 783, 840, 899, 960, 999, 1023, 1088, 1155, 1224, 1295, 1330, 1368, 1443, 1520, 1599, 1680, 1727, 1763
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
Also numbers k > 0 such that k is a perfect power (A001597) but k+1 is not.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n begins with A375703(n), ends with a(n), adds up to A375705(n), and has length A375702(n).
		

Crossrefs

For nonprime numbers: A006093, min A055670, anti-runs A068780, min A005381.
For prime numbers we have A045344.
Inserting 8 after 7 gives A045542.
For nonsquarefree numbers we have A072284(n) + 1, anti-runs A068781.
For squarefree numbers we have A373415, anti-runs A007674.
For prime-powers we have A373674 (min A373673), anti-runs A006549 (A120430).
Non-prime-powers: A373677 (min A373676), anti-runs A255346 (min A373575).
The anti-run version is A375739.
A001597 lists perfect-powers, differences A053289.
A046933 counts composite numbers between primes.
A375736 gives lengths of anti-runs of non-prime-powers, sums A375737.
For runs of non-perfect-powers (A007916):
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (this) (same as A045542 with 8 removed)
- sum: A375705

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Max/@Split[Select[Range[100],radQ],#1+1==#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&!radQ[#+1]&]

Formula

For n > 2 we have a(n) = A045542(n+1).

A375713 Indices of consecutive non-prime-powers (A361102) differing by 1. Numbers k such that the k-th and (k+1)-th non-prime-powers differ by just one.

Original entry on oeis.org

5, 8, 9, 15, 16, 17, 19, 20, 23, 24, 27, 28, 30, 31, 32, 33, 36, 38, 40, 41, 44, 45, 46, 47, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 85, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2024

Keywords

Examples

			The initial non-prime-powers are 1, 6, 10, 12, 14, 15, 18, 20, 21, which first increase by one after the fifth and eighth terms.
		

Crossrefs

The inclusive version is a(n) - 1.
For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
Positions of 1's in A375708.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!PrimePowerQ[#]&]],1]

Formula

A361102(k+1) - A361102(k) = 1.
Previous Showing 11-20 of 30 results. Next