cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A318055 Numbers k such that gcd(k, 2^k - 2) = 1 and gcd(k, 3^k - 3) > 1.

Original entry on oeis.org

247, 403, 559, 715, 871, 1027, 1339, 1495, 1651, 1807, 1963, 2009, 2035, 2119, 2587, 2743, 2899, 2993, 3055, 3211, 3523, 3649, 3679, 3835, 3977, 3991, 4147, 4303, 4331, 4453, 4615, 4633, 4699, 4771, 4927, 5239, 5395, 5617, 5707, 5863, 5995, 6019, 6031, 6161, 6331, 6487, 6799, 6929, 6955, 7081, 7111
Offset: 1

Views

Author

Thomas Ordowski, Aug 14 2018

Keywords

Comments

Odd numbers k such that gcd(k,2^(k-1)-1) = 1 and gcd(k,3^(k-1)-1) > 1.
It seems that a(n) == 91 (mod 156) for infinitely many n.
Fermat pseudoprimes to base 3 (A005935) in this sequence are 16531, 49051, 72041, ...

Crossrefs

Subsequence of A267999 and probably of A121707.
Cf. A139613(2n+1): it gives many terms of the sequence.
Cf. A005935.

Programs

  • GAP
    Filtered([1..10000],k->Gcd(k,2^k-2) = 1 and Gcd(k,3^k-3) > 1);  # Muniru A Asiru, Oct 07 2018
  • Maple
    select(k->gcd(k,2^k-2) = 1 and gcd(k,3^k-3) > 1,[$1..10000]); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    Select[Range[8000], GCD[#, 2^# - 2] == 1 && GCD[#, 3^# - 3] > 1 &] (* Amiram Eldar, Mar 31 2024 *)
  • PARI
    isok(k) = (gcd(k,2^k-2) == 1) && (gcd(k,3^k-3) != 1); \\ Michel Marcus, Aug 14 2018
    

Extensions

More terms from Michel Marcus, Aug 14 2018

A326584 a(n) = gcd(n*N(n-1), D(n-1)), with N(n)/D(n) = B(n) the n-th Bernoulli number.

Original entry on oeis.org

1, 2, 3, 1, 5, 1, 7, 1, 3, 1, 11, 1, 13, 1, 3, 1, 17, 1, 19, 1, 3, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 1, 3, 1, 1, 1, 37, 1, 3, 1, 41, 1, 43, 1, 15, 1, 47, 1, 7, 1, 3, 1, 53, 1, 1, 1, 3, 1, 59, 1, 61, 1, 3, 1, 5, 1, 67, 1, 3, 1, 71, 1, 73, 1, 3, 1, 1, 1, 79, 1
Offset: 1

Views

Author

Peter Luschny, Jul 19 2019

Keywords

Comments

Conjectures:
(1) If n > 1 then a(n) = n <=> n is prime or Carmichael (A002997).
(2) If n is odd then a(n) = 1 <=> n = 1 or is a term of A121707.
(3) The fixed points of n^2/a(n) are exactly the numbers satisfying Korselt's criterion (compare A326578 and A324050).

Examples

			a(559) =   1 and 559 is in A121707.
a(561) = 561 and 561 is Carmichael.
a(563) = 563 and 563 is prime.
		

Crossrefs

Cf. A000040, A002997, A121707, A027641/A027642 (Bernoulli), A324050 (Korselt).

Programs

  • Maple
    db := n -> denom(bernoulli(n)): nb := n -> numer(bernoulli(n)):
    a := n -> igcd(n*nb(n-1), db(n-1)): seq(a(n), n=1..80);
  • Mathematica
    a[n_] := With[{b = BernoulliB[n-1]}, GCD[n Numerator[b], Denominator[b]]];
    Array[a, 80] (* Jean-François Alcover, Jul 21 2019 *)
  • PARI
    a(n) = my(b=bernfrac(n-1)); gcd(n*numerator(b), denominator(b)); \\ Michel Marcus, Jul 19 2019

Formula

a(n) divides n, n/a(n) = A326478(n).

A316908 a(n) is the smallest k with n prime factors such that 2^(k-1) == 1 (mod k) and p-1 does not divide k-1 for every prime p dividing k.

Original entry on oeis.org

7957, 617093, 134564501, 384266404601, 8748670222601, 6105991025919737, 901196605940857381
Offset: 2

Views

Author

Thomas Ordowski, Jul 16 2018

Keywords

Comments

Conjecture: a(n) > A006931(n) for every n > 2.
a(6)-a(8) derived from Feitsma's tables of pseudoprimes. a(9) > 2^64. - Giovanni Resta, Jul 19 2018
From Daniel Suteu, Jun 08 2020: (Start)
a(9) <= 521957994426556057126261,
a(10) <= 1315856103949347820015303981,
a(11) <= 6357507186189933506573017225316941,
a(12) <= 77822245466150976053960303855104674781. (End)

Crossrefs

Extensions

More terms from Michel Marcus, Jul 16 2018
a(6)-a(8) from Giovanni Resta, Jul 19 2018

A319484 a(n) is the smallest k > 1 such that n^k == n (mod k) and gcd(k, b^k-b) = 1 for some b <> n.

Original entry on oeis.org

35, 35, 7957, 16531, 1247, 4495, 35, 817, 2501, 697, 55, 55, 143, 221, 35, 35, 1247, 493, 221, 95, 35, 35, 77, 253, 115, 403, 247, 247, 203, 35, 155, 155, 697, 187, 35, 35, 35, 589, 221, 95, 533, 35, 287, 77, 55, 55, 115, 221, 329, 35, 35, 221, 221, 689, 55, 35, 35
Offset: 0

Views

Author

Thomas Ordowski, Oct 26 2018

Keywords

Comments

a(n) is the smallest k > 1 such that n^k == n (mod k) and p-1 does not divide k-1 for every prime p dividing k, see A121707.
We have A000790(n) < a(n) <= A316940(n) for n > 0.
It seems that the sequence is unbounded like A316940.
The term a(5) = 4495 = 5*29*31 is not semiprime.

Examples

			a(6) = 35 since 6^35 == 6 (mod 35) and 35 = 5*7 is the smallest "anti-Carmichael number": 5-1 does not divide 7-1. We have gcd(35,2^35-2) = 1.
		

Crossrefs

Programs

  • PARI
    isac(n) = {my(f = factor(n)[,1]); for (i=1, #f, if (((n-1) % (f[i]-1)) == 0, return (0));); return (1);}
    isok(n,k) = {if (Mod(n, k)^k != Mod(n, k), return (0)); return (isac(k));}
    a(n) = {my(k=2); while (!isok(n,k), k++); return (k);} \\ Michel Marcus, Oct 27 2018

Extensions

More terms from Michel Marcus, Oct 26 2018

A345675 Numbers m such that D_{m-1} is the smallest base b > 1 for which b^{m-1} == 1 (mod m), where D_k is the denominator (A027642) of Bernoulli number B_k.

Original entry on oeis.org

35, 14315, 22399, 35711, 455891, 881809, 1198159, 1917071, 2287987, 3310037, 4464941, 11029439, 12190061, 13325753, 17832803, 33012941, 33296147, 37814849, 44986423, 74437181, 76911149, 82873661, 91909571, 98859851, 108266171, 128008159, 128981243, 132391409
Offset: 1

Views

Author

Thomas Ordowski, Sep 04 2021

Keywords

Comments

These are numbers m such that A027642(m-1) = A105222(m).
The corresponding bases of these pseudoprimes are 6, 6, 42, 66, 66, 46410, 3318, 66, 42, 30, 330, 6, 330, 61410, 6, 330, 1074, 510, 3318, 330, 7890, 330, 66, 12606, 66, 42, 6, 510, ...

Crossrefs

Programs

  • Mathematica
    Den[n_] := Times @@ (1 + Select[Divisors[n], PrimeQ[# + 1] &]); q[k_] := Module[{m = 2, d = Den[k - 1]}, If[PowerMod[d, k - 1, k] != 1, False, While[m < d && PowerMod[m, k - 1, k] != 1, m++]; m == d]]; Select[Range[3, 10^6, 2], q] (* Amiram Eldar, Sep 04 2021 *)
  • PARI
    f(n) = my(m=2); while(Mod(m, n)^(n-1)!=1, m++); m;
    isok(m) = f(m) == denominator(bernfrac(m-1)); \\ Michel Marcus, Sep 04 2021

Extensions

More terms from Amiram Eldar, Sep 04 2021
Previous Showing 21-25 of 25 results.