cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 329 results. Next

A322813 a(n) = A001227(A122111(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1, 2, 4, 2, 3, 2, 1, 4, 1, 2, 3, 2, 4, 4, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1, 2, 5, 6, 3, 2, 1, 4, 4, 2, 3, 2, 1, 4, 1, 2, 3, 2, 4, 4, 1, 2, 3, 6, 1, 4, 1, 2, 6, 2, 5, 4, 1, 2, 3, 2, 1, 4, 4, 2, 3, 2, 1, 4, 5, 2, 3, 2, 4, 2, 1, 8, 3, 6, 1, 4, 1, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A001227(A122111(n)).

A331595 a(n) = gcd(A122111(n), A241909(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 3, 16, 5, 3, 3, 32, 5, 64, 3, 18, 7, 128, 15, 256, 5, 18, 3, 512, 7, 3, 3, 5, 5, 1024, 15, 2048, 11, 18, 3, 18, 7, 4096, 3, 18, 7, 8192, 15, 16384, 5, 50, 3, 32768, 11, 3, 45, 18, 5, 65536, 7, 108, 7, 18, 3, 131072, 7, 262144, 3, 50, 13, 108, 15, 524288, 5, 18, 45, 1048576, 11, 2097152, 3, 15, 5, 18, 15, 4194304, 11, 7, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Crossrefs

Cf. A122111, A241909, A241916, A331596 (number of distinct prime factors), A331597, A331598, A331599, A331600.
Cf. also A280489, A280491.

Programs

  • Mathematica
    Array[If[# == 1, 1, GCD @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 82] (* Michael De Vlieger, Jan 24 2020, after JungHwan Min at A122111 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m));
    A331595(n) = gcd(A122111(n), A241909(n));

Formula

a(n) = gcd(A122111(n), A241909(n)).
a(A241916(n)) = a(n).

A336125 a(n) = A292385(A122111(n)).

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 8, 5, 5, 8, 16, 10, 32, 16, 10, 10, 64, 8, 128, 20, 20, 32, 256, 20, 8, 64, 11, 40, 512, 16, 1024, 20, 40, 128, 16, 21, 2048, 256, 80, 40, 4096, 32, 8192, 80, 22, 512, 16384, 40, 17, 17, 160, 160, 32768, 16, 32, 80, 320, 1024, 65536, 42, 131072, 2048, 44, 41, 64, 64, 262144, 320, 640, 34, 524288, 41, 1048576, 4096, 20
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2020

Keywords

Crossrefs

Programs

Formula

a(1) = 0, a(2) = 1, and for n > 2, a(n) = [A122111(n) == 1 (mod 4)] + 2*a(A253553(n)).
a(n) = A292385(A122111(n)).
a(n) = A253566(n) - A336120(n).
A000120(a(n)) = A336123(n).

A253561 Square array read by antidiagonals: A(row,col) = A122111(A246278(row,col)).

Original entry on oeis.org

2, 3, 4, 6, 9, 8, 5, 18, 27, 16, 12, 25, 54, 81, 32, 10, 36, 125, 162, 243, 64, 24, 50, 108, 625, 486, 729, 128, 7, 72, 250, 324, 3125, 1458, 2187, 256, 15, 49, 216, 1250, 972, 15625, 4374, 6561, 512, 20, 75, 343, 648, 6250, 2916, 78125, 13122, 19683, 1024, 48, 100, 375, 2401, 1944, 31250, 8748, 390625, 39366, 59049, 2048, 14, 144, 500, 1875, 16807, 5832, 156250, 26244, 1953125, 118098, 177147, 4096
Offset: 2

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A253562 gives the inverse permutation.
The top row A253568 contains the same terms as A102750, but in different order.

Examples

			The top left corner of the array:
   2,  3,   6,   5,   12,   10,   24,    7,   15,   20,  48,   14,  96,   40,
   4,  9,  18,  25,   36,   50,   72,   49,   75,  100, 144,   98, 288,  200,
   8, 27,  54, 125,  108,  250,  216,  343,  375,  500, 432,  686, 864, 1000,
  16, 81, 162, 625,  324, 1250,  648, 2401, 1875, 2500,1296, 4802,2592, 5000,
  32,243, 486,3125,  972, 6250, 1944,16807, 9375,12500,3888,33614,7776,25000,
...
		

Crossrefs

Inverse: A253562.
The leftmost column: A000079. Topmost row: A253568.

Programs

Formula

a(n) = A122111(A246278(n)). [As a linear sequence].
Other identities.
A071178(A(row,col)) = row for all col. [All terms on row k have k as the exponent of their largest prime factor.]
A253560(A(row,col)) = A(row+1,col). [For any n >= 2, A253560(n) gives the term which is immediately below n in the same column of this array.]

A253564 Permutation of natural numbers: a(n) = A156552(A122111(n)).

Original entry on oeis.org

0, 1, 3, 2, 7, 5, 15, 4, 6, 11, 31, 9, 63, 23, 13, 8, 127, 10, 255, 19, 27, 47, 511, 17, 14, 95, 12, 39, 1023, 21, 2047, 16, 55, 191, 29, 18, 4095, 383, 111, 35, 8191, 43, 16383, 79, 25, 767, 32767, 33, 30, 22, 223, 159, 65535, 20, 59, 71, 447
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

Note the indexing.
a(n) (n>=2) can be obtained by the composition of a bijection between {2,3,4,...} and the set of integer partitions and a bijection between the set of integer partitions and {1,2,3,4,...}. Explanation on the example n=18. Write 18 = 3*3*2 = 2'*2'*1', where m' = m-th prime. Consider the partition p = (2,2,1) and let b denote the southeast border of the Ferrers board of p. Form a binary number by replacing each east step of b by 1 and each north step of b, with the exception of the last one, by 0: 1010. Its value is a(18) = 10. - Emeric Deutsch, Sep 08 2016.

Crossrefs

Programs

  • Maple
    a:= proc(n) local i, l, r; r, l:= 0, [0, sort(map(i->
          numtheory[pi](i[1])$i[2], ifactors(n)[2]))[]];
          for i to nops(l)-1 do
            r:= 2*((x-> 2*x+1)@@(l[i+1]-l[i]))(r)
          od; r/2
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jul 21 2017
  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[ 2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &[If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@ n]]], {n, 57}] (* Michael De Vlieger, Sep 08 2016, after JungHwan Min at A122111 *)
  • Scheme
    (define (A253564 n) (A156552 (A122111 n)))

Formula

a(n) = A156552(A122111(n)).
As a composition of other permutations:
a(n) = A054429(A253566(n)).

A322867 a(n) = A000120(A122111(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 1, 3, 4, 2, 3, 2, 1, 4, 1, 3, 2, 2, 4, 3, 1, 2, 2, 3, 1, 4, 1, 2, 3, 2, 1, 3, 3, 4, 2, 2, 1, 3, 4, 3, 2, 2, 1, 3, 1, 2, 3, 3, 4, 4, 1, 2, 2, 4, 1, 2, 1, 2, 4, 2, 3, 4, 1, 3, 3, 2, 1, 3, 4, 2, 2, 3, 1, 3, 3, 2, 2, 2, 4, 3, 1, 4, 3, 6, 1, 4, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DigitCount[#, 2, 1] &@ If[# < 3, 1, Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@Length@k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@ #]] &, 105] (* Michael De Vlieger, Dec 31 2018, after JungHwan Min at A122111 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A322867(n) = hammingweight(A122111(n));

Formula

a(n) = A000120(A122111(n)) = A000120(A322865(n)) = A001222(A322863(n)).

A323903 a(n) = A002487(A122111(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 4, 2, 1, 3, 1, 2, 4, 3, 1, 4, 1, 3, 4, 2, 1, 3, 8, 2, 7, 3, 1, 4, 1, 5, 4, 2, 8, 8, 1, 2, 4, 3, 1, 4, 1, 3, 7, 2, 1, 5, 14, 12, 4, 3, 1, 9, 8, 3, 4, 2, 1, 8, 1, 2, 7, 5, 8, 4, 1, 3, 4, 12, 1, 6, 1, 2, 18, 3, 14, 4, 1, 5, 9, 2, 1, 8, 8, 2, 4, 3, 1, 9, 14, 3, 4, 2, 8, 5, 1, 16, 7, 6, 1, 4, 1, 3, 18
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A323903(n) = A002487(A122111(n));

Formula

a(n) = A002487(A122111(n)) = A002487(A322865(n)).
a(p) = 1 for all primes p.

A334108 a(n) = A331410(A122111(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 2, 0, 1, 2, 1, 0, 3, 0, 2, 2, 1, 0, 1, 3, 1, 4, 2, 0, 3, 0, 2, 2, 1, 3, 2, 0, 1, 2, 1, 0, 3, 0, 2, 4, 1, 0, 2, 4, 4, 2, 2, 0, 3, 3, 1, 2, 1, 0, 2, 0, 1, 4, 2, 3, 3, 0, 2, 2, 4, 0, 3, 0, 1, 5, 2, 4, 3, 0, 2, 2, 1, 0, 2, 3, 1, 2, 1, 0, 3, 4, 2, 2, 1, 3, 2, 0, 5, 4, 3, 0, 3, 0, 1, 5
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2020

Keywords

Crossrefs

Cf. A008578 (positions of zeros), A064989, A105560, A122111, A322865, A331410, A334107.

Programs

Formula

a(n) = A331410(A122111(n)) = A331410(A322865(n)).
a(n) = A331410(A105560(n)) + a(A064989(n)).

A336321 a(n) = A122111(A225546(n)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 19, 6, 9, 11, 53, 10, 131, 23, 13, 8, 311, 15, 719, 22, 29, 59, 1619, 14, 49, 137, 21, 46, 3671, 17, 8161, 12, 61, 313, 37, 25, 17863, 727, 139, 26, 38873, 31, 84017, 118, 39, 1621, 180503, 20, 361, 77, 317, 274, 386093, 33, 71, 58, 733, 3673, 821641, 34, 1742537, 8167, 87, 18, 151, 67, 3681131, 626, 1627, 41, 7754077, 35, 16290047
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A122111 and A225546 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A122111 maps the k-th prime to 2^k, whereas A225546 maps it to 2^2^(k-1).
In composing these permutations, this sequence maps the squarefree numbers, as listed in A019565, to the prime numbers in increasing order; and the list of powers of 2 to the "normal" numbers (A055932), as listed in A057335.

Examples

			From _Peter Munn_, Jan 04 2021: (Start)
In this set of examples we consider [a(n)] as a function a(.) with an inverse, a^-1(.).
First, a table showing mapping of the powers of 2:
  n     a^-1(2^n) =    2^n =        a(2^n) =
        A001146(n-1)   A000079(n)   A057335(n)
  0             (1)         1            1
  1               2         2            2
  2               4         4            4
  3              16         8            6
  4             256        16            8
  5           65536        32           12
  6      4294967296        64           18
  ...
Next, a table showing mapping of the squarefree numbers, as listed in A019565 (a lexicographic ordering by prime factors):
  n   a^-1(A019565(n))   A019565(n)      a(A019565(n))   a^2(A019565(n))
      Cf. {A337533}      Cf. {A005117}   = prime(n)      = A033844(n-1)
  0              1               1             (1)               (1)
  1              2               2               2                 2
  2              3               3               3                 3
  3              8               6               5                 7
  4              6               5               7                19
  5             12              10              11                53
  6             18              15              13               131
  7            128              30              17               311
  8              5               7              19               719
  9             24              14              23              1619
  ...
As sets, the above columns are A337533, A005117, A008578, {1} U A033844.
Similarly, we get bijections between sets A000290\{0} -> {1} U A070003; and {1} U A335740 -> A005408 -> A066207.
(End)
		

Crossrefs

A122111 composed with A225546.
Cf. A336322 (inverse permutation).
Other sequences used in a definition of this sequence: A000040, A000188, A019565, A248663, A253550, A253560.
Sequences used to express relationship between terms of this sequence: A003159, A003961, A297002, A334747.
Cf. A057335.
A mapping between the binary tree sequences A334866 and A253563.
Lists of sets (S_1, S_2, ... S_j) related by the bijection defined by the sequence: (A000290\{0}, {1} U A070003), ({1} U A001146, A000079, A055932), ({1} U A335740, A005408, A066207), (A337533, A005117, A008578, {1} U A033844).

Formula

a(n) = A122111(A225546(n)).
Alternative definition: (Start)
Write n = m^2 * A019565(j), where m = A000188(n), j = A248663(n).
a(1) = 1; otherwise for m = 1, a(n) = A000040(j), for m > 1, a(n) = A253550^j(A253560(a(m))).
(End)
a(A000040(m)) = A033844(m-1).
a(A001146(m)) = 2^(m+1).
a(2^n) = A057335(n).
a(n^2) = A253560(a(n)).
For n in A003159, a(2n) = b(a(n)), where b(1) = 2, b(n) = A253550(n), n >= 2.
More generally, a(A334747(n)) = b(a(n)).
a(A003961(n)) = A297002(a(n)).
a(A334866(m)) = A253563(m).

A336322 a(n) = A225546(A122111(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 16, 9, 12, 10, 32, 15, 24, 18, 256, 30, 64, 7, 48, 27, 20, 14, 512, 36, 40, 81, 96, 21, 128, 42, 65536, 54, 60, 72, 1024, 35, 120, 45, 768, 70, 192, 105, 80, 162, 28, 210, 131072, 25, 144, 90, 160, 11, 4096, 108, 1536, 135, 56, 22, 2048, 33, 84, 243, 4294967296, 216, 384, 66, 240, 270, 288, 55, 262144, 110, 168, 324, 480, 50
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A225546 and A122111 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A225546 maps the k-th prime to 2^2^(k-1), whereas A122111 maps it to 2^k.
In composing these permutations, this sequence maps the list of prime numbers to the squarefree numbers, as listed in A019565; and the "normal" numbers (A055932), as listed in A057335, to ascending powers of 2.

Crossrefs

A225546 composed with A122111.
Sorted even bisection: A335738.
Sorted odd bisection (excluding 1): A335740.
Sequences used to express relationship between terms of this sequence: A001222, A003961, A253560, A331590, A350066.
Sequences of sequences (S_1, S_2, ... S_j) with the property a(S_i) = S_{i+1}, or essentially so: (A033844, A000040, A019565), (A057335, A000079, A001146), (A000244, A011764), (A001248, A334110), (A253563, A334866).
The inverse permutation, A336321, lists sequences where the property is weaker (between the sets of terms).

Formula

a(A033844(m)) = A000040(m+1). [Offset corrected Peter Munn, Feb 14 2022]
a(A000040(m)) = A019565(m).
a(A057335(m)) = 2^m.
For m >= 1, a(2^m) = A001146(m-1).
a(A253563(m)) = A334866(m).
From Peter Munn, Feb 14 2022: (Start)
a(A253560(n)) = a(n)^2.
For n >= 2, a(A003961(n)) = A331590(a(n), 2^2^(A001222(n)-1)).
a(A350066(n, k)) = A331590(a(n), a(k)).
(End)
Previous Showing 21-30 of 329 results. Next