cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A131322 Row sums of triangle A131321.

Original entry on oeis.org

1, 1, 3, 5, 12, 23, 51, 103, 221, 456, 965, 2009, 4227, 8833, 18540, 38803, 81363, 170399, 357145, 748176, 1567849, 3284833, 6883059, 14421533, 30218028, 63314735, 132664227, 277968871, 582428789, 1220356440, 2557009709
Offset: 0

Views

Author

Gary W. Adamson, Jun 28 2007

Keywords

Comments

Equals INVERT transform of (1, 2, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 28 2009
The sequence is also the INVERT transform of the aerated odd-indexed Fibonacci numbers (i.e., of (1, 0, 2, 0, 5, 0, ...)). Sequence A124400 is the INVERT transform of the aerated even-indexed Fibonacci numbers. - Gary W. Adamson, Feb 07 2014
a(n) is the number of tilings of a 4 X 2n rectangle into L tetrominoes (no reflections, only rotations). - Nicolas Bělohoubek, Jan 21 2025

Examples

			a(4) = 12 = 5 + 0 + 6 + 0 + 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 3, -1, -1}, {1, 1, 3, 5}, 50] (* Paolo Xausa, Jan 28 2025 *)

Formula

G.f.: (1-x^2)/(1 - x - 3x^2 + x^3 + x^4). - Philippe Deléham, Jan 21 2012
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4), a(0)=1, a(1)=1, a(2)=3, a(3)=5. - Philippe Deléham, Jan 21 2012
a(n) = Sum_{m=0..ceiling(n/2)} binomial(n-m,n-2*m)*Fibonacci(n-2*m+1). - Vladimir Kruchinin, Jan 26 2013
From Nicolas Bělohoubek, Jan 21 2025: (Start)
a(n) = Sum_{m=1..4} (alpha_m * x_m^n). For x_m and alpha_m values see "L-tetromino tilings" article in links.
a(2*n) = A166482(n). (End)

Extensions

a(10)-a(30) from Philippe Deléham, Jan 21 2012

A102756 Triangle T(n,k), 0<=k<=n, read by rows defined by: T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(n,k) = 0 if k < 0 or if n < k.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 10, 10, 3, 5, 20, 31, 20, 5, 6, 35, 76, 78, 40, 8, 7, 56, 161, 232, 184, 76, 13, 8, 84, 308, 582, 636, 406, 142, 21, 9, 120, 546, 1296, 1831, 1604, 861, 260, 34, 10, 165, 912, 2640, 4630, 5215, 3820, 1766, 470, 55
Offset: 0

Views

Author

Philippe Deléham, Dec 18 2006

Keywords

Comments

Rising and falling diagonals are A008999, A124400.
Subtriangle of triangle given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 17 2012
Jointly generated with A209130 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012

Examples

			Triangle begins:
  1;
  2, 1;
  3, 4, 2;
  4, 10, 10, 3;
  5, 20, 31, 20, 5;
  6, 35, 76, 78, 40, 8;
  7, 56, 161, 232, 184, 76, 13;
  8, 84, 308, 582, 636, 406, 142, 21;
  9, 120, 546, 1296, 1831, 1604, 861, 260, 34;
  10, 165, 912, 2640, 4630, 5215, 3820, 1766, 470, 55;
Triangle (1, 1, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
  1
  1, 0
  2, 1, 0
  3, 4, 2, 0
  4, 10, 10, 3, 0
  5, 20, 31, 20, 5, 0
  6, 35, 76, 78, 40, 8, 0
  7, 56, 161, 232, 184, 76, 13, 0
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A102756 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209130 *)
    (* Clark Kimberling, Mar 05 2012 *)

Formula

Sum_{k=0..n} x^k*T(n,k) = A254006(n), A000012(n), A000027(n+1), A000244(n), A015530(n+1), A015544(n+1) for x = -2, -1, 0, 1, 2, 3 respectively.
T(n,n-1) = 2*A001629(n+1) for n>=1.
T(n,n) = Fibonacci(n+1) = A000045(n+1).
T(n,0) = n+1.
T(n,1) = A000292(n) for n>=1.
T(n+1,2) = binomial(n+4,n-1)+binomial(n+2,n-1)= A051747(n) for n>=1.
G.f.: 1/(1-(2+y)*x+(1+y)*(1-y)*x^2). - Philippe Deléham, Feb 17 2012

A127963 Number of 1's in A127962(n).

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 10, 12, 16, 22, 31, 40, 51, 64, 84, 96, 100, 157, 174, 351, 855, 1309, 1770, 2904, 5251, 5346, 5640, 6196, 7240, 21369, 41670, 47685, 58620, 63516, 69469, 70540, 133509, 134994, 187161, 493096, 2015700
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d (* Artur Jasinski, Feb 09 2007 *)
    DigitCount[#, 2, 1]& /@ Select[Table[(2^p + 1)/3, {p, Prime[Range[300]]}], PrimeQ] (* Amiram Eldar, Jul 23 2023 *)

Formula

a(n) = A000120(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = A007953(A127962(n)). - Amiram Eldar, Jul 23 2023

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Jul 23 2023

A127964 Number of 0's in the binary expansion of A127962(n).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 29, 38, 49, 62, 82, 94, 98, 155, 172, 349, 853, 1307, 1768, 2902, 5249, 5344, 5638, 6194, 7238, 21367, 41668, 47683, 58618, 63514, 69467, 70538, 133507, 134992, 187159, 493094, 2015698
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Apparently numbers k such that (2^(2*k+3)+1)/3 is prime. - James R. Buddenhagen, Apr 14 2011 [This is true. See the second formula. - Amiram Eldar, Oct 13 2024]

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]], {x, 1, Length[a]}]; d
    (Select[Prime[Range[200]], PrimeQ[(2^# + 1)/3] &] - 3)/2 (* Amiram Eldar, Oct 13 2024 *)

Formula

a(n) = A023416(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = (A000978(n)-3)/2. - Amiram Eldar, Oct 13 2024

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Oct 13 2024

A127965 Number of bits in A127962(n).

Original entry on oeis.org

2, 4, 6, 10, 12, 16, 18, 22, 30, 42, 60, 78, 100, 126, 166, 190, 198, 312, 346, 700, 1708, 2616, 3538, 5806, 10500, 10690, 11278, 12390, 14478, 42736, 83338, 95368, 117238, 127030, 138936, 141078, 267016, 269986, 374320, 986190, 4031398
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]+DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d

Formula

a(n) = A127964(n) + A127963(n).
a(n) = 1 + floor(log_2(A000979(n))) = 1 + floor(log_2(2^A000978(n)+1) - A020857) = A000978(n) - 1. - R. J. Mathar, Feb 01 2008

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 30 2012
a(30)-a(41) from Amiram Eldar, Oct 19 2024

A077920 Expansion of (1-x)^(-1)/(1+2*x-x^2-x^3).

Original entry on oeis.org

1, -1, 4, -7, 18, -38, 88, -195, 441, -988, 2223, -4992, 11220, -25208, 56645, -127277, 285992, -642615, 1443946, -3244514, 7290360, -16381287, 36808421, -82707768, 185842671, -417584688, 938304280, -2108350576, 4737420745, -10644887785, 23918845740, -53745158519, 120764274994
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1+2x-x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{-1,3,0,-1},{1,-1,4,-7},40] (* Harvey P. Dale, Mar 13 2013 *)
  • PARI
    Vec((1-x)^(-1)/(1+2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(n) = (-1)^n*A124400(n). - Philippe Deléham, Dec 18 2006
a(n) = a(n-1) + 3*a(n-2) - a(n-4); a(0)=1, a(1)=-1, a(2)=4, a(3)=-7. - Harvey P. Dale, Mar 13 2013

A127959 Nonprime numbers of the form 1 + Sum_{k=1..m} 2^(2*k - 1).

Original entry on oeis.org

171, 10923, 699051, 11184811, 44739243, 178956971, 2863311531, 11453246123, 45812984491, 183251937963, 733007751851, 11728124029611, 46912496118443, 187649984473771, 750599937895083, 3002399751580331, 12009599006321323
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Prime numbers of the form 1 + Sum_{k=1..m} 2^(2*n - 1) is A000979. Numbers x such that 1 + Sum_{k=1..m} 2^(2*n - 1) is prime for n=1,2,...,x is A127936. A127955 is probably a subset of the present sequence.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c] == False, AppendTo[a, c]], {x, 1, 50}]; a
    Select[Table[Sum[2^(2k-1),{k,n}]+1,{n,50}],!PrimeQ[#]&] (* Harvey P. Dale, Dec 23 2017 *)
Previous Showing 11-17 of 17 results.