cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A110737 Row sums in A112668.

Original entry on oeis.org

1, 4, 21, 40, 1555, 3906, 299593, 3280, 87381, 435848050, 67546215517, 61035156, 61054982558011, 328114698808274, 76861433640456465, 21523360, 128583032925805678351, 953674316406, 275941052631578947368421, 1743392200
Offset: 1

Views

Author

Amarnath Murthy, Aug 10 2005

Keywords

Comments

For all n, a(n) is a term in row n of triangle A125118, and furthermore if n is prime then a(n) = A060072(n+1). - Mathew Englander, Dec 20 2020

Crossrefs

Programs

  • Maple
    A110737 := proc(n) local i,a ; if n = 1 then RETURN(1) ; else a := 2 ; while (1-a^n)/(1-a) mod n <> 0 do a := a+1 ; od ; RETURN( (1-a^n)/(1-a) ) ; fi ; end: for n from 1 to 25 do printf("%d, ",A110737(n)) : od : # R. J. Mathar, Mar 13 2007
  • Mathematica
    Block[{a = {1}, k, s}, Do[k = 2; While[Mod[Set[s, Total@ NestList[# k &, 1, i - 1]], i] != 0, k++]; AppendTo[a, s], {i, 2, 20}]; a] (* Michael De Vlieger, Dec 31 2020 *)

Extensions

More terms from R. J. Mathar, Mar 13 2007

A125598 a(n) = ((n+1)^(n-1) - 1)/n.

Original entry on oeis.org

0, 1, 5, 31, 259, 2801, 37449, 597871, 11111111, 235794769, 5628851293, 149346699503, 4361070182715, 139013933454241, 4803839602528529, 178901440719363487, 7143501829211426575, 304465936543600121441
Offset: 1

Views

Author

Alexander Adamchuk, Nov 26 2006

Keywords

Comments

Odd prime p divides a(p-2).
a(n) is prime for n = {3,4,6,74, ...}; prime terms are {5, 31, 2801, ...}.
a(n) is the (n-1)-th generalized repunit in base (n+1). For example, a(5) = 259 which is 1111 in base 6. - Mathew Englander, Oct 20 2020

Crossrefs

Cf. A000272 (n^(n-2)), A125599.
Cf. other sequences of generalized repunits, such as A125118, A053696, A055129, A060072, A031973, A173468, A023037, A119598, A085104, and A162861.

Programs

  • Magma
    [((n+1)^(n-1) -1)/n: n in [1..25]]; // G. C. Greubel, Aug 15 2022
  • Mathematica
    Table[((n+1)^(n-1)-1)/n, {n,25}]
  • Sage
    [gaussian_binomial(n,1,n+2) for n in range(0,18)] # Zerinvary Lajos, May 31 2009
    

Formula

a(n) = ((n+1)^(n-1) - 1)/n.
a(n) = (A000272(n+1) - 1)/n.
a(2k-1)/(2k+1) = A125599(k) for k>0.
From Mathew Englander, Dec 17 2020: (Start)
a(n) = (A060072(n+1) - A083069(n-1))/2.
For n > 1, a(n) = Sum_{k=0..n-2} (n+1)^k.
For n > 1, a(n) = Sum_{j=0..n-2} n^j*C(n-1,j+1). (End)

A125120 Sum of values of repunits of length n in base b representation with 1

Original entry on oeis.org

1, 7, 41, 296, 2829, 34637, 519049, 9197344, 188039787, 4356087231, 112754069273, 3224945523736, 100999970565337, 3437517630509497, 126332966608699441, 4986057436997869696, 210331809309776028055, 9443995455881145458715
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2006

Keywords

Examples

			a(4) = [1111]_2 + [1111]_3 + [1111]_4 + [1111]_5 = ((2+1)*2+1)*2+1 + ((3+1)*3+1)*3+1 + ((4+1)*4+1)*4+1 + ((5+1)*5+1)*5+1 = 296.
		

Crossrefs

Row sums of A125118.

Programs

  • Magma
    [(&+[(k^n -1)/(k-1): k in [2..n+1]]) : n in [1..30]]; // G. C. Greubel, Aug 14 2022
    
  • Mathematica
    Table[Sum[(k^n -1)/(k-1), {k, 2, n+1}], {n, 30}] (* G. C. Greubel, Aug 14 2022 *)
  • PARI
    a(n) = sum(k=1, n, sum(i=0, n-1, (k+1)^i)); \\ Michel Marcus, Dec 14 2020
    
  • SageMath
    [sum(((k+1)^n -1)/k for k in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 14 2022

Formula

a(n) = Sum_{k=1..n} Sum_{i=0..n-1} (k+1)^i. [Corrected by Mathew Englander, Dec 14 2020]
a(n) = Sum_{k=1..n} A125118(n,k).
a(n+1) - a(n) = A076015(n+1) + A228275(n+2, n). - Mathew Englander, Dec 14 2020
a(n) = Sum_{j=2..n+1} (j^n - 1)/(j-1)

A125119 Values of repunits with odd length L in base (L+3)/2 representation.

Original entry on oeis.org

1, 13, 341, 19531, 2015539, 329554457, 78536544841, 25736391511831, 11111111111111111, 6115909044841454629, 4182283628124518315101, 3479492117784426363920483, 3461445831219105624193478971
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2006

Keywords

Comments

Central terms of the triangle in A125118: a(n)=A125118(2*n-1,n).

Examples

			a(4) = [1111111]_5 = (((((5+1)*5+1)*5+1)*5+1)*5+1)*5+1 = 19531.
		

Formula

a(n) = Sum((n+1)^k: 0<=k<=2*(n-1)).
Previous Showing 11-14 of 14 results.