cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A140803 Numbers of the form (2^(p*q)-1) /((2^p-1)*(2^q-1)), where p>q are primes.

Original entry on oeis.org

3, 11, 43, 151, 683, 2359, 2731, 43691, 174763, 599479, 2796203, 8727391, 9588151, 178956971, 715827883, 2454285751, 39268347319, 45812984491, 567767102431, 733007751851, 2932031007403, 10052678938039, 46912496118443, 145295143558111, 3002399751580331, 41175768098368951, 192153584101141163
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008, Jul 22 2008; corrected Sep 07 2008

Keywords

Comments

The sequence contains, in particular, A126614 (q=2) and A143012 (q=3).
If pq-1 is squarefree then the terms of the sequence are either primes or overpseudoprimes to base 2 (see A141232). In particular, they are strong pseudoprimes to base 2 (A001262).

Examples

			Entry 3 from (q=2,p=3), entry 11 from (q=2,p=5), entry 43 from (q=2,p=7), entry 151 from (q=3,p=5), entry 683 from (q=2,p=11).
		

Crossrefs

Programs

  • Maple
    N:= 100: # to use all (p,q) with p*q < N
    Primes:= select(isprime,[$2..floor(N/2)]):
    A:= {}:
    for i from 1 to nops(Primes) do
      p:= Primes[i];
      Qs:= select(q -> q < N/p, [seq(Primes[j],j=1..i-1)]);
      A:= A union {seq((2^(p*q)-1)/(2^p-1)/(2^q-1),q=Qs)};
    od:
    A; # Robert Israel, Sep 02 2014
  • Mathematica
    terms = 27; Clear[seq]; seq[m_] := seq[m] = Table[(2^(p q)-1)/((2^p-1) (2^q-1)), {q, Prime[Range[m]]}, {p, Prime[Range[PrimePi[q]+1, terms]]}] // Flatten // Union // PadRight[#, terms]&;
    seq[1]; seq[m=2]; While[seq[m] != seq[m-1], m++]; seq[m] (* Jean-François Alcover, Sep 17 2018 *)

Extensions

a(17) to a(27) from Robert Israel, Sep 03 2014

A143012 Numbers of the form (4^p + 2^p + 1)/7, where p > 3 is prime.

Original entry on oeis.org

151, 2359, 599479, 9588151, 2454285751, 39268347319, 10052678938039, 41175768098368951, 658812288653553079, 2698495133088002829751, 690814754065816531725751, 11053036065049294753459639, 2829577232652317876553477559, 11589948344943812957569751412151
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008, Jul 21 2008

Keywords

Comments

If 8^p-1 is squarefree then the terms of the sequence are either primes (A000040) or overpseudoprimes to base 2 (A141232). In particular, composite numbers of the sequence are strong pseudoprimes to base 2 (A001262). E.g., a(5)=2454285751 is A001262(1828).

Crossrefs

Programs

  • Maple
    p:=ithprime: seq((4^p(n)+2^p(n)+1)*1/7, n=3..14); # Emeric Deutsch, Aug 16 2008
  • Mathematica
    (4^#+2^#+1)/7&/@Prime[Range[3,30]] (* Harvey P. Dale, Feb 19 2013 *)

Extensions

Extended by Emeric Deutsch, Aug 16 2008
More terms from Harvey P. Dale, Feb 19 2013

A127959 Nonprime numbers of the form 1 + Sum_{k=1..m} 2^(2*k - 1).

Original entry on oeis.org

171, 10923, 699051, 11184811, 44739243, 178956971, 2863311531, 11453246123, 45812984491, 183251937963, 733007751851, 11728124029611, 46912496118443, 187649984473771, 750599937895083, 3002399751580331, 12009599006321323
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Prime numbers of the form 1 + Sum_{k=1..m} 2^(2*n - 1) is A000979. Numbers x such that 1 + Sum_{k=1..m} 2^(2*n - 1) is prime for n=1,2,...,x is A127936. A127955 is probably a subset of the present sequence.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c] == False, AppendTo[a, c]], {x, 1, 50}]; a
    Select[Table[Sum[2^(2k-1),{k,n}]+1,{n,50}],!PrimeQ[#]&] (* Harvey P. Dale, Dec 23 2017 *)

A243979 Indices of Wagstaff primes.

Original entry on oeis.org

2, 5, 14, 124, 399, 4552, 15898, 203095, 37029521, 105973558438, 19140185454656173, 3827634977577891833517
Offset: 1

Views

Author

Omar E. Pol, Jun 18 2014

Keywords

Examples

			For n = 3 the third Wagstaff prime is A000979(3) = 43 and 43 is also the 14th prime number, so a(3) = 14.
		

Crossrefs

Programs

  • PARI
    default(primelimit, 10^9); forprime(p=3, 31, q=(2^p+1)/3; if(isprime(q), print1(primepi(q)", "))) \\ Jens Kruse Andersen, Jun 22 2014

Formula

a(n) = A000720(A000979(n)).
A000040(a(n)) = A000979(n).

Extensions

a(11) from Jens Kruse Andersen, Jun 22 2014
a(12) calculated using Kim Walisch's primecount and added by Amiram Eldar, Sep 05 2024

A360475 Smallest prime factor of (2^prime(n) + 1) / 3.

Original entry on oeis.org

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 59, 715827883, 1777, 83, 2932031007403, 283, 107, 2833, 768614336404564651, 7327657, 56409643, 1753, 201487636602438195784363, 499, 179, 971, 845100400152152934331135470251, 415141630193, 643, 104124649, 227
Offset: 2

Views

Author

Alain Rocchelli, Feb 08 2023

Keywords

Comments

If (2^prime(n) + 1) / 3 is prime then a(n) is a Wagstaff prime (cf. A000979).
For n > 2, a(n) is congruent to 1 (mod 2*prime(n)).

Examples

			a(2)=3 since for prime(2)=3, (2^3+1)/3 = 3;
a(3)=11 since for prime(3)=5, (2^5+1)/3 = 11;
a(10)=59 since for prime(10)=29, (2^29+1)/3 = 59*3033169.
		

Crossrefs

Programs

  • Maple
    a:= n-> min(numtheory[factorset]((2^ithprime(n)+1)/3)):
    seq(a(n), n=2..30);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    a[n_] := FactorInteger[(2^Prime[n]+1)/3][[1, 1]];
    Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jan 27 2025 *)
  • PARI
    forprime(p=3, 100, An=(2^p+1)/3; if(isprime(An), print1(An,", "), forprime(div=3, 2^((p-1)/2), if(An%div==0, print1(div,", "); next(2)))))

Formula

a(n) = A020639(A126614(n)).

Extensions

a(26)-a(30) from Amiram Eldar, Feb 08 2023
Previous Showing 11-15 of 15 results.