cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A179268 Product of numbers between and including n and n^2.

Original entry on oeis.org

1, 24, 181440, 3487131648000, 646300418472124416000000, 3099944389915843478899995401256960000000, 844835922269816056767016893501799134566045599137792000000000
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 06 2010

Keywords

Comments

a(n) = Product_{k=n..n^2} k;
a(n) = A088020(n)/A000142(n-1).

Examples

			a(2) = 2*3*4 = 24;
a(3) = 3*4*5*6*7*8*9 = 181440.
		

Crossrefs

Programs

  • Magma
    [Factorial(n^2) / Factorial(n-1): n in [1..10]]; // Vincenzo Librandi, May 31 2011
  • Mathematica
    Table[Times@@Range[n,n^2],{n,10}] (* Harvey P. Dale, Sep 16 2020 *)

Formula

a(n) = (n^2)! / (n-1)!.

Extensions

Definition clarified by Harvey P. Dale, Sep 16 2020

A291203 Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 3, 6, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 24, 12, 0, 36, 24, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 5, 80, 90, 20, 0, 200, 300, 60, 0, 300, 120, 0, 120, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 240, 540, 240, 30, 0, 1170, 3000, 1260, 120, 0, 3360, 2520, 360, 0, 2520, 720, 0, 720, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2017

Keywords

Comments

Positive elements in column t=1 give A034855.
Elements in rows h=0 give A023531.
Elements in rows h=1 give A059297.
Positive row sums per layer give A235595.
Positive column sums per layer give A061356.

Examples

			n h\t: 0   1   2  3  4 5 : A235595 : A061356          : A000272
-----+-------------------+---------+------------------+--------
0 0  : 1                 :         :                  : 1
-----+-------------------+---------+------------------+--------
1 0  : 0   1             :      1  :   .              :
1 1  : 0                 :         :   1              : 1
-----+-------------------+---------+------------------+--------
2 0  : 0   0   1         :      1  :   .   .          :
2 1  : 0   2             :      2  :   .              :
2 2  : 0                 :         :   2   1          : 3
-----+-------------------+---------+------------------+--------
3 0  : 0   0   0  1      :      1  :   .   .   .      :
3 1  : 0   3   6         :      9  :   .   .          :
3 2  : 0   6             :      6  :   .              :
3 3  : 0                 :         :   9   6   1      : 16
-----+-------------------+---------+------------------+--------
4 0  : 0   0   0  0  1   :      1  :   .   .   .  .   :
4 1  : 0   4  24 12      :     40  :   .   .   .      :
4 2  : 0  36  24         :     60  :   .   .          :
4 3  : 0  24             :     24  :   .              :
4 4  : 0                 :         :  64  48  12  1   : 125
-----+-------------------+---------+------------------+--------
5 0  : 0   0   0  0  0 1 :      1  :   .   .   .  . . :
5 1  : 0   5  80 90 20   :    195  :   .   .   .  .   :
5 2  : 0 200 300 60      :    560  :   .   .   .      :
5 3  : 0 300 120         :    420  :   .   .          :
5 4  : 0 120             :    120  :   .              :
5 5  : 0                 :         : 625 500 150 20 1 : 1296
-----+-------------------+---------+------------------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
           binomial(n-1, j-1)*j*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
        end:
    g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
  • Mathematica
    b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[
         Binomial[n-1, j-1]*j*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
    g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)

Formula

Sum_{i=0..n} F(n,i,n-i) = A243014(n) = 1 + A038154(n).
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000272(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A089946(n-1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A234953(n+1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1)*(n+1) * F(n,h,t) = A001854(n+1) for n>0.
Sum_{t=0..n-1} F(n,1,t) = A235596(n+1).
F(2n,n,n) = A126804(n) for n>0.
F(n,0,n) = 1 = A000012(n).
F(n,1,1) = n = A001477(n) for n>1.
F(n,n-1,1) = n! = A000142(n) for n>0.
F(n,1,n-1) = A002378(n-1) for n>0.
F(n,2,1) = A000551(n).
F(n,3,1) = A000552(n).
F(n,4,1) = A000553(n).
F(n,1,2) = A001788(n-1) for n>2.
F(n,0,0) = A000007(n).

A134478 Triangle read by rows, T(0,0) = 1; n-th row = (n+1) terms of n, n+1, n+2, ...

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14, 8, 9, 10, 11, 12, 13, 14, 15, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
Offset: 0

Views

Author

Gary W. Adamson, Oct 27 2007

Keywords

Comments

Apart from the irregular choice of T(0,0) the same as A051162. - R. J. Mathar, Mar 28 2012

Examples

			First few rows of the triangle:
  1;
  1, 2;
  2, 3, 4;
  3, 4, 5,  6;
  4, 5, 6,  7,  8;
  5, 6, 7,  8,  9, 10;
  6, 7, 8,  9, 10, 11, 12;
  7, 8, 9, 10, 11, 12, 13, 14;
  ...
		

Crossrefs

Cf. A051162, A134479 (row sums), A126804 (row products).

Programs

  • Mathematica
    Join[{1},Flatten[Table[Range[n,2n],{n,10}]]] (* Harvey P. Dale, Nov 21 2014 *)
  • PARI
    concat([1], for(n=1,10, for(k=0,n, print1(n+k, ", ")))) \\ G. C. Greubel, Sep 24 2017
Previous Showing 11-13 of 13 results.