cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A185347 Semiprimes that are the sum of 10 consecutive primes.

Original entry on oeis.org

129, 158, 382, 1114, 1546, 2374, 2582, 3446, 3578, 6218, 6826, 7978, 8266, 9298, 9382, 10202, 12946, 14002, 15178, 15406, 15766, 16382, 16466, 17282, 17362, 18374, 18838, 19226, 19606, 23878, 24074, 25154, 25642, 26206, 29782, 30034, 30638, 32902, 33526, 34862, 34934, 35678, 35978, 36602
Offset: 1

Views

Author

Zak Seidov, Feb 15 2011

Keywords

Comments

Or, semiprimes in A127337 (Numbers that are the sum of 10 consecutive primes).
a(1) = 3*43, all other terms are of the form 2*prime.

Crossrefs

Cf. A127337.

Programs

  • Mathematica
    (* First run the program for A109611 to define semiPrimeQ *) Select[Table[Plus@@Prime[Range[n, n + 9]], {n, 500}], semiPrimeQ] (* Alonso del Arte, Feb 15 2011 *)
    Select[Total/@Partition[Prime[Range[600]],10,1],PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 06 2014 *)
  • PARI
    {s=129;for(n=1,2000,if(2==bigomega(s), print1(s", ")); s=s-prime(n)+prime(n+10))}

A217985 Primes that are arithmetical average of 100 consecutive primes.

Original entry on oeis.org

5009, 6047, 8039, 9311, 9497, 11171, 15137, 17029, 18869, 20983, 26339, 28627, 31699, 35023, 38833, 43579, 49199, 49727, 50549, 60089, 68447, 72469, 76603, 87931, 89659, 98809, 99733, 102547, 111217, 143281, 143831, 150431, 185401, 191341, 195137, 195161
Offset: 1

Views

Author

Zak Seidov, Oct 21 2012

Keywords

Examples

			a(1) = 5009 because  prime(620)+...+prime(719) = 4583+...+5441 = 500900.
		

Crossrefs

Programs

  • Mathematica
    h = 100; t = {}; s = Prime[Range[h]]; pCnt = h; Do[sm = Total[s]; If[Mod[sm, h] == 0 && PrimeQ[sm/h], AppendTo[t, sm/h]]; pCnt++; s = Append[Rest[s], Prime[pCnt]], {20000}]; t (* T. D. Noe, Oct 22 2012 *)

A284102 Numbers that are the sum of 10 consecutive primes and also the sum of 10 consecutive semiprimes.

Original entry on oeis.org

6504, 12946, 12990, 19052, 19764, 21490, 31638, 35604, 41300, 42364, 45212, 52528, 58104, 60034, 63400, 66662, 67858, 69880, 74090, 74824, 78542, 88844, 96256, 96346, 97818, 104584, 106970, 111122, 113120, 117540, 125384
Offset: 1

Views

Author

Zak Seidov, Mar 20 2017

Keywords

Examples

			a(1)=6504 because 6504 is the sum of 10 consecutive primes A000040(114..114+9)={619,631,641,643,647,653,659,661,673,677} and also
6504 is the sum of 10 consecutive semiprimes A001358(192..192+9)={629,633,634,635,649,655,662,667,669,671}.
Note that a(1) = 6504 = A283873(10).
		

Crossrefs

Programs

  • Maple
    N:= 10^6:
    P:= select(isprime, [$1..N]):
    S:= select(t -> numtheory:-bigomega(t)=2, [$1..N]):
    P10:= {seq(add(P[i],i=m..m+9),m=1..nops(P)-9)}:
    S10:= {seq(add(S[i],i=m..m+9),m=1..nops(S)-9)}:
    sort(convert(P10 intersect S10,list)); # Robert Israel, Mar 20 2017
  • Mathematica
    With[{nn = 12600}, Intersection[Total /@ Partition[Prime@ Range@ PrimePi@ nn, 10, 1], Total /@ Partition[Select[Range@ nn, PrimeOmega@ # == 2 &], 10, 1]]] (* Michael De Vlieger, Mar 20 2017 *)
  • PARI
    list(lim)=if(lim<6504,return([])); my(v=List(),u=v,P=primes(9),x=(lim+10*log(lim))\1,t); forprime(p=2,x\2, forprime(q=2,min(x\p,p), listput(u,p*q))); u=Set(u); while(u[#u]+1+(t=sum(i=0,8,u[#u-i]))<=lim, for(n=x+1,lim-t, if(issemi(n), u=concat(u,n); next(2))); break); for(i=1,#u-9, u[i]+=sum(j=1,9,u[i+j])); t=vecsum(P); forprime(p=P[#P]+1,, t+=p; if(t>lim, break); if(setsearch(u,t), listput(v,t)); t-=P[1]; P=concat(P[2..9], p)); Vec(v) \\ Charles R Greathouse IV, Mar 20 2017

A125270 Coefficient of x^2 in polynomial whose zeros are 5 consecutive primes starting with the n-th prime.

Original entry on oeis.org

1358, 3954, 10478, 22210, 43490, 78014, 129530, 206650, 324350, 466270, 621466, 853742, 1132130, 1436690, 1870850, 2388050, 2886370, 3440410, 4133410, 4904906, 5926654, 7195670, 8425430, 9792950, 11040910, 12098990, 13917898, 16097810
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

Sums of all distinct products of 3 out of 5 consecutive primes, starting with the n-th prime; value of 3rd elementary symmetric function on the 5 consecutive primes.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, (Prime[x] Prime[x + 1] Prime[x + 2] + Prime[x] Prime[x + 1] Prime[x + 3] + Prime[x] Prime[x + 1] Prime[x + 4] + Prime[x] Prime[x + 2] Prime[x + 3] + Prime[x] Prime[x + 2] Prime[x + 4] + Prime[x] Prime[x + 3] Prime[x + 4] + Prime[x + 1] Prime[x + 2] Prime[x + 3] + Prime[x + 1] Prime[x + 2] Prime[x + 4] + Prime[x + 1] Prime[x + 3] Prime[x + 4] + Prime[x + 2] Prime[x + 3] Prime[x + 4])], {x, 1, 100}]; a
    fcp[{p_,q_,r_,s_,t_}]:=p*q(r+s+t)+(p+q)r(s+t)+(p+q+r)s*t; fcp/@Partition[ Prime[ Range[40]],5,1] (* Harvey P. Dale, Sep 05 2014 *)

Formula

Let p = Prime(n), q = Prime(n+1), r = Prime(n+2), s = Prime(n+3) and t = Prime(n+4). Then a(n) = p q (r+s+t) + (p + q) r (s + t) + (p + q + r) s t.

Extensions

Edited and corrected by Franklin T. Adams-Watters, Jan 23 2007
Previous Showing 11-14 of 14 results.