cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A127774 Triangle read by rows: row n consists of n-1 zeros followed by A000292(n).

Original entry on oeis.org

1, 0, 4, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0, 0, 0, 0, 165, 0, 0, 0, 0, 0, 0, 0, 0, 0, 220, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Comments

Essentially triangle T(n,k), read by rows, given by (0,0,0,0,0,0,0,...) DELTA (4,-3/2,5/6,-1/3,3/5,-1/10,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 14 2011

Examples

			First few rows of the triangle are:
  1;
  0,  4;
  0,  0, 10;
  0,  0,  0, 20;
  0,  0,  0,  0, 35;
  ...
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from sympy.ntheory.primetest import is_square
    def A127774(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(a+1)*(a+2)//6 if is_square((n<<3)+1) else 0 # Chai Wah Wu, Jun 09 2025

Formula

G.f.: 1/((x*y-1)^4). - R. J. Mathar, Aug 12 2015

Extensions

More terms from Michel Marcus, Jun 10 2025

A132921 Triangle read by rows: T(n,k) = n + Fibonacci(k) - 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 6, 7, 9, 6, 6, 7, 8, 10, 13, 7, 7, 8, 9, 11, 14, 19, 8, 8, 9, 10, 12, 15, 20, 28, 9, 9, 10, 11, 13, 16, 21, 29, 42, 10, 10, 11, 12, 14, 17, 22, 30, 43, 64, 11, 11, 12, 13, 15, 18, 23, 31, 44, 65, 99, 12, 12, 13, 14, 16, 19, 24, 32, 45, 66, 100, 155
Offset: 1

Views

Author

Gary W. Adamson, Sep 05 2007

Keywords

Comments

Right border = A081659, row sums = A132922: (1, 4, 10, 19, 32, ...).

Examples

			First few rows of the triangle are:
  1;
  2, 2;
  3, 3, 4;
  4, 4, 5, 6;
  5, 5, 6, 7, 9;
  ...
Column 3 = 4, 5, 6, 7, ...; since A081659(2) = 4.
		

Crossrefs

Row sums are A132922.

Programs

  • Mathematica
    T[n_,k_]:=n+Fibonacci[k]-1;Table[T[n,k],{n,12},{k,n}]//Flatten (* James C. McMahon, Mar 09 2025 *)
  • PARI
    T(n,k)=if(k<=n, n + fibonacci(k) - 1, 0) \\ Andrew Howroyd, Sep 01 2018

Formula

Equals (A127648 * A000012 + A000012 * A127647) - A000012 as infinite lower triangular matrices.

Extensions

Name clarified and terms a(56) and beyond from Andrew Howroyd, Sep 01 2018

A188429 L(n) is the minimum of the largest elements of all n-full sets, or 0 if no such set exists.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 13, 13
Offset: 1

Views

Author

Madjid Mirzavaziri, Mar 31 2011

Keywords

Comments

Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. The number L(n) denotes the minimum of the set {max A: (sum A)=[n] }.
Terms m > 7 occur exactly m times. - Reinhard Zumkeller, Aug 06 2015

Examples

			From _Reinhard Zumkeller_, Aug 06 2015: (Start)
Compressed table: no commas and for a and k: 10 replaced by A, 11 by B.
. -----------------------------------------------------------------------------
.   n   1   5   10   15   20   25   30   35   40   45   50   55   60   65   70
. ----  .---.----.----.----.----.----.----.----.----.----.----.----.----.----.-
. t(n)  10100100010000100000100000010000000100000000100000000010000000000100000
. k(n)  1 2  3   4    5     6      7       8        9         A          B
. r(n)  0101201230123401234501234560123456701234567801234567890123456789A012345
. ----  -----------------------------------------------------------------------
. a(n)  102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC
. -----------------------------------------------------------------------------
where t(n)=A010054(n), k(n)=A127648(n) zeros blanked, and r(n)=A002262(n). (End)
		

Crossrefs

Programs

  • Haskell
    a188429 n = a188429_list !! (n-1)
    a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++
                   f [15 ..] (drop 15 a010054_list) 0 4
       where f (x:xs) (t:ts) r k | t == 1    = (k + 1) : f xs ts 1 (k + 1)
                                 | r < k - 1 = (k + 1) : f xs ts (r + 1) k
                                 | otherwise = (k + 2) : f xs ts (r + 1) k
    -- Reinhard Zumkeller, Aug 06 2015
  • Mathematica
    kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* Jean-François Alcover, Oct 10 2015 *)

Formula

for n>= 15. Let n=k(k+1)/2+r, where r=0,1,..., k then
|k, if r=0
L(n) = |k+1, if 1 <= r <= k-2
|k+2, if k-1 <= r <= k.

A220698 Indices of triangular numbers generated in A224218.

Original entry on oeis.org

1, 6, 6, 14, 14, 14, 14, 43, 43, 36, 57, 36, 52, 43, 49, 43, 89, 52, 89, 52, 121, 49, 52, 57, 70, 89, 249, 89, 89, 89, 70, 166, 166, 103, 89, 121, 103, 103, 121, 89, 103, 241, 158, 158, 91, 91, 91, 91, 241, 166, 166, 103, 121, 103, 103, 121, 103, 121, 225, 225, 497, 216, 334
Offset: 1

Views

Author

Alex Ratushnyak, Apr 13 2013

Keywords

Comments

Indices of triangular numbers in A220689. That is, S = triangular(i) XOR triangular(i+1); increment i; if S is a triangular number then index of S is appended to a(n). Initially i=0. XOR is the binary logical exclusive-or operator.

Crossrefs

Programs

  • Maple
    A220698 := proc(n)
        A127648(A220689(n)-1) ;
    end proc: # R. J. Mathar, Apr 23 2013
  • Mathematica
    nmax = 100;
    pmax = 2 nmax^2; (* increase coeff 2 if A224218 is too short *)
    A224218 = Join[{0}, Flatten[Position[Partition[Accumulate[Range[pmax]], 2, 1], _?(OddQ[Sqrt[1 + 8 BitXor[#[[1]], #[[2]]]]]&), {1}, Heads -> False]]];
    a[n_] := Module[{i, t}, i = A224218[[n]]; t = BitXor[PolygonalNumber[i], PolygonalNumber[i + 1]]; (Sqrt[8 t + 1] - 1)/2];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Aug 07 2023, after Harvey P. Dale in A224218 *)
  • Python
    def rootTriangular(a):
        sr = 1<<33
        while a < sr*(sr+1)//2:
          sr>>=1
        b = sr>>1
        while b:
            s = sr+b
            if a >= s*(s+1)//2:
              sr = s
            b>>=1
        return sr
    for i in range(1<<12):
            s = (i*(i+1)//2) ^ ((i+1)*(i+2)//2)
            t = rootTriangular(s)
            if s == t*(t+1)//2:
                print(str(t), end=',')

Formula

a(n) = i where A000217(i) = A220689(n).

A132898 Triangle read by rows: T(n,k) = (-1)^(n-1)*n + (-1)^(k-1)*k - 1, 1 <= k <= n.

Original entry on oeis.org

1, -2, -5, 3, 0, 5, -4, -7, -2, -9, 5, 2, 7, 0, 9, -6, -9, -4, -11, -2, -13, 7, 4, 9, 2, 11, 0, 13, -8, -11, -6, -13, -4, -15, -2, -17, 9, 6, 11, 4, 13, 2, 15, 0, 17, -10, -13, -8, -15, -6, -17, -4, -19, -2, -21, 11, 8, 13, 6, 15, 4, 17, 2, 19, 0, 21
Offset: 1

Views

Author

Gary W. Adamson, Sep 03 2007

Keywords

Comments

Row sums = A132899: (1, -7, 8, -22, 23, -45, ...).

Examples

			First few rows of the triangle:
   1;
  -2,  -5;
   3,   0,   5;
  -4,  -7,  -2,  -9;
   5,   2,   7,   0,   9;
  -6,  -9,  -4, -11,  -2, -13;
   7,   4,   9,   2,  11,   0,  13;
  -8, -11,  -6, -13,  -4, -15,  -2, -17;
   9,   6,  11,   4,  13,   2,  15,   0,   7;
  ...
T(5,3) = 7 = S(5) + S(3) = 5 + 3 - 1.
		

Crossrefs

Row sums are A132899.
Cf. A127648.

Programs

  • PARI
    T(n,k) = if(k<=n, (-1)^(n-1)*n + (-1)^(k-1)*k - 1, 0); \\ Andrew Howroyd, Sep 01 2018

Extensions

Name clarified and terms a(56) and beyond from Andrew Howroyd, Sep 01 2018

A132919 Triangle read by rows: T(n,k) = Fibonacci(n) + k - 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 34, 35, 36, 37, 38, 39, 40, 41, 42, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Gary W. Adamson, Sep 05 2007

Keywords

Comments

Left border = Fibonacci numbers, right border = A081659.
Infinite lower triangular matrix by rows: n-th row = n terms of: F(n) followed by (F(n) + 1), (F(n) + 2), (F(n) + 3), ...

Examples

			First few rows of the triangle:
  1;
  1,  2;
  2,  3,  4;
  3,  4,  5,  6;
  5,  6,  7,  8,  9;
  8,  9, 10, 11, 12, 13;
  ...
		

Crossrefs

Row sums are A132920.

Programs

  • Mathematica
    T[n_,k_]:=Fibonacci[n]+k-1;Table[T[n,k],{n,11},{k,n}]//Flatten (* James C. McMahon, Mar 09 2025 *)
  • PARI
    T(n,k) = if(k<=n, fibonacci(n) + k - 1, 0); \\ Andrew Howroyd, Aug 10 2018

Extensions

Name changed and terms a(56) and beyond from Andrew Howroyd, Aug 10 2018

A127651 Triangle T(n,k) = n*k if k|n, 0 otherwise; 1<=k<=n.

Original entry on oeis.org

1, 2, 4, 3, 0, 9, 4, 8, 0, 16, 5, 0, 0, 0, 25, 6, 12, 18, 0, 0, 36, 7, 0, 0, 0, 0, 0, 49, 8, 16, 0, 32, 0, 0, 0, 64, 9, 0, 27, 0, 0, 0, 0, 0, 81, 10, 20, 0, 0, 50, 0, 0, 0, 0, 100, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 12, 24, 36, 48, 0, 72, 0, 0, 0, 0, 0, 144
Offset: 1

Views

Author

Gary W. Adamson, Jan 22 2007

Keywords

Comments

Equals the matrix product A127648 * A127093 as infinite lower triangular matrices.

Examples

			First few rows of the triangle are:
1;
2, 4;
3, 0, 9;
4, 8, 0, 16;
5, 0, 0, 0, 25;
6, 12, 18, 0, 0, 36;
7, 0, 0, 0, 0, 0, 49;
8, 16, 0, 32, 0, 0, 0, 64;
...
		

Crossrefs

Cf. A127648, A127093, A064987 (row sums).

Programs

  • Maple
    A127651 := proc(n,k)
            if n mod k =0 then
                    n*k;
            else
                    0 ;
            end if;
    end proc: # R. J. Mathar, Oct 01 2011

Formula

T(n,k) = n*A127093(n,k). - R. J. Mathar, Oct 01 2011

A127740 Natural number transform of Aitken's triangle.

Original entry on oeis.org

1, 2, 4, 6, 9, 15, 20, 28, 40, 60, 75, 100, 135, 185, 260, 312, 402, 522, 684, 906, 1218, 1421, 1785, 2254, 2863, 3661, 4718, 6139, 7016, 8640, 10680, 13256, 16528, 20712, 26104, 33120, 37260, 45153, 54873, 66888, 81801, 100395, 123696, 153063, 190323
Offset: 0

Views

Author

Gary W. Adamson, Jan 27 2007

Keywords

Comments

Left column (1, 2, 6, 20, ...) = A052889.
Row sums give A127741.

Examples

			First few rows of the triangle:
   1;
   2,   4;
   6,   9,  15;
  20,  28,  40,  60;
  75, 100, 135, 185, 260;
  ...
		

Crossrefs

Formula

A127648 * A011971 as infinite lower triangular matrices.

A188023 Triangle read by rows, T(n,k) = k*A115361(n-1,k-1).

Original entry on oeis.org

1, 1, 2, 0, 0, 3, 1, 2, 0, 4, 0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 1, 2, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 5, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Gary W. Adamson, Mar 19 2011

Keywords

Comments

Triangle obtained by multiplying the lower triangular matrices A115361 and A127648.

Examples

			First few rows of the triangle =
1
1, 2
0, 0, 3
1, 2, 0, 4
0, 0, 0, 0, 5
0, 0, 3, 0, 0, 6
0, 0, 0, 0, 0, 0, 7
1, 2, 0, 4, 0, 0, 0, 8
0, 0, 0, 0, 0, 0, 0, 0, 9
0, 0, 0, 0, 5, 0, 0, 0, 0, 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11
0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
...
		

Crossrefs

Cf. A115361, A127648, A129527 (row sums)
Previous Showing 31-39 of 39 results.