A127774
Triangle read by rows: row n consists of n-1 zeros followed by A000292(n).
Original entry on oeis.org
1, 0, 4, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0, 0, 0, 0, 165, 0, 0, 0, 0, 0, 0, 0, 0, 0, 220, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364
Offset: 1
First few rows of the triangle are:
1;
0, 4;
0, 0, 10;
0, 0, 0, 20;
0, 0, 0, 0, 35;
...
A132921
Triangle read by rows: T(n,k) = n + Fibonacci(k) - 1, 1 <= k <= n.
Original entry on oeis.org
1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 6, 7, 9, 6, 6, 7, 8, 10, 13, 7, 7, 8, 9, 11, 14, 19, 8, 8, 9, 10, 12, 15, 20, 28, 9, 9, 10, 11, 13, 16, 21, 29, 42, 10, 10, 11, 12, 14, 17, 22, 30, 43, 64, 11, 11, 12, 13, 15, 18, 23, 31, 44, 65, 99, 12, 12, 13, 14, 16, 19, 24, 32, 45, 66, 100, 155
Offset: 1
First few rows of the triangle are:
1;
2, 2;
3, 3, 4;
4, 4, 5, 6;
5, 5, 6, 7, 9;
...
Column 3 = 4, 5, 6, 7, ...; since A081659(2) = 4.
-
T[n_,k_]:=n+Fibonacci[k]-1;Table[T[n,k],{n,12},{k,n}]//Flatten (* James C. McMahon, Mar 09 2025 *)
-
T(n,k)=if(k<=n, n + fibonacci(k) - 1, 0) \\ Andrew Howroyd, Sep 01 2018
Name clarified and terms a(56) and beyond from
Andrew Howroyd, Sep 01 2018
A188429
L(n) is the minimum of the largest elements of all n-full sets, or 0 if no such set exists.
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 13, 13
Offset: 1
From _Reinhard Zumkeller_, Aug 06 2015: (Start)
Compressed table: no commas and for a and k: 10 replaced by A, 11 by B.
. -----------------------------------------------------------------------------
. n 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
. ---- .---.----.----.----.----.----.----.----.----.----.----.----.----.----.-
. t(n) 10100100010000100000100000010000000100000000100000000010000000000100000
. k(n) 1 2 3 4 5 6 7 8 9 A B
. r(n) 0101201230123401234501234560123456701234567801234567890123456789A012345
. ---- -----------------------------------------------------------------------
. a(n) 102003400455675666776777788788888998999999AA9AAAAAAABBABBBBBBBBCCBCCCCC
. -----------------------------------------------------------------------------
where t(n)=A010054(n), k(n)=A127648(n) zeros blanked, and r(n)=A002262(n). (End)
-
a188429 n = a188429_list !! (n-1)
a188429_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7] ++
f [15 ..] (drop 15 a010054_list) 0 4
where f (x:xs) (t:ts) r k | t == 1 = (k + 1) : f xs ts 1 (k + 1)
| r < k - 1 = (k + 1) : f xs ts (r + 1) k
| otherwise = (k + 2) : f xs ts (r + 1) k
-- Reinhard Zumkeller, Aug 06 2015
-
kr[n_] := {k, r} /. ToRules[Reduce[0 <= r <= k && n == k*((k+1)/2)+r, {k, r}, Integers]]; L[n_] := Which[{k0, r0} = kr[n]; r0 == 0, k0, 1 <= r0 <= k0-2, k0+1, k0-1 <= r0 <= k0, k0+2]; Join[{1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 5, 6, 7}, Table[L[n], {n, 15, 80}]] (* Jean-François Alcover, Oct 10 2015 *)
A220698
Indices of triangular numbers generated in A224218.
Original entry on oeis.org
1, 6, 6, 14, 14, 14, 14, 43, 43, 36, 57, 36, 52, 43, 49, 43, 89, 52, 89, 52, 121, 49, 52, 57, 70, 89, 249, 89, 89, 89, 70, 166, 166, 103, 89, 121, 103, 103, 121, 89, 103, 241, 158, 158, 91, 91, 91, 91, 241, 166, 166, 103, 121, 103, 103, 121, 103, 121, 225, 225, 497, 216, 334
Offset: 1
-
A220698 := proc(n)
A127648(A220689(n)-1) ;
end proc: # R. J. Mathar, Apr 23 2013
-
nmax = 100;
pmax = 2 nmax^2; (* increase coeff 2 if A224218 is too short *)
A224218 = Join[{0}, Flatten[Position[Partition[Accumulate[Range[pmax]], 2, 1], _?(OddQ[Sqrt[1 + 8 BitXor[#[[1]], #[[2]]]]]&), {1}, Heads -> False]]];
a[n_] := Module[{i, t}, i = A224218[[n]]; t = BitXor[PolygonalNumber[i], PolygonalNumber[i + 1]]; (Sqrt[8 t + 1] - 1)/2];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Aug 07 2023, after Harvey P. Dale in A224218 *)
-
def rootTriangular(a):
sr = 1<<33
while a < sr*(sr+1)//2:
sr>>=1
b = sr>>1
while b:
s = sr+b
if a >= s*(s+1)//2:
sr = s
b>>=1
return sr
for i in range(1<<12):
s = (i*(i+1)//2) ^ ((i+1)*(i+2)//2)
t = rootTriangular(s)
if s == t*(t+1)//2:
print(str(t), end=',')
A132898
Triangle read by rows: T(n,k) = (-1)^(n-1)*n + (-1)^(k-1)*k - 1, 1 <= k <= n.
Original entry on oeis.org
1, -2, -5, 3, 0, 5, -4, -7, -2, -9, 5, 2, 7, 0, 9, -6, -9, -4, -11, -2, -13, 7, 4, 9, 2, 11, 0, 13, -8, -11, -6, -13, -4, -15, -2, -17, 9, 6, 11, 4, 13, 2, 15, 0, 17, -10, -13, -8, -15, -6, -17, -4, -19, -2, -21, 11, 8, 13, 6, 15, 4, 17, 2, 19, 0, 21
Offset: 1
First few rows of the triangle:
1;
-2, -5;
3, 0, 5;
-4, -7, -2, -9;
5, 2, 7, 0, 9;
-6, -9, -4, -11, -2, -13;
7, 4, 9, 2, 11, 0, 13;
-8, -11, -6, -13, -4, -15, -2, -17;
9, 6, 11, 4, 13, 2, 15, 0, 7;
...
T(5,3) = 7 = S(5) + S(3) = 5 + 3 - 1.
-
T(n,k) = if(k<=n, (-1)^(n-1)*n + (-1)^(k-1)*k - 1, 0); \\ Andrew Howroyd, Sep 01 2018
Name clarified and terms a(56) and beyond from
Andrew Howroyd, Sep 01 2018
A132919
Triangle read by rows: T(n,k) = Fibonacci(n) + k - 1.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 34, 35, 36, 37, 38, 39, 40, 41, 42, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1
First few rows of the triangle:
1;
1, 2;
2, 3, 4;
3, 4, 5, 6;
5, 6, 7, 8, 9;
8, 9, 10, 11, 12, 13;
...
-
T[n_,k_]:=Fibonacci[n]+k-1;Table[T[n,k],{n,11},{k,n}]//Flatten (* James C. McMahon, Mar 09 2025 *)
-
T(n,k) = if(k<=n, fibonacci(n) + k - 1, 0); \\ Andrew Howroyd, Aug 10 2018
Name changed and terms a(56) and beyond from
Andrew Howroyd, Aug 10 2018
A127651
Triangle T(n,k) = n*k if k|n, 0 otherwise; 1<=k<=n.
Original entry on oeis.org
1, 2, 4, 3, 0, 9, 4, 8, 0, 16, 5, 0, 0, 0, 25, 6, 12, 18, 0, 0, 36, 7, 0, 0, 0, 0, 0, 49, 8, 16, 0, 32, 0, 0, 0, 64, 9, 0, 27, 0, 0, 0, 0, 0, 81, 10, 20, 0, 0, 50, 0, 0, 0, 0, 100, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 12, 24, 36, 48, 0, 72, 0, 0, 0, 0, 0, 144
Offset: 1
First few rows of the triangle are:
1;
2, 4;
3, 0, 9;
4, 8, 0, 16;
5, 0, 0, 0, 25;
6, 12, 18, 0, 0, 36;
7, 0, 0, 0, 0, 0, 49;
8, 16, 0, 32, 0, 0, 0, 64;
...
A127740
Natural number transform of Aitken's triangle.
Original entry on oeis.org
1, 2, 4, 6, 9, 15, 20, 28, 40, 60, 75, 100, 135, 185, 260, 312, 402, 522, 684, 906, 1218, 1421, 1785, 2254, 2863, 3661, 4718, 6139, 7016, 8640, 10680, 13256, 16528, 20712, 26104, 33120, 37260, 45153, 54873, 66888, 81801, 100395, 123696, 153063, 190323
Offset: 0
First few rows of the triangle:
1;
2, 4;
6, 9, 15;
20, 28, 40, 60;
75, 100, 135, 185, 260;
...
A188023
Triangle read by rows, T(n,k) = k*A115361(n-1,k-1).
Original entry on oeis.org
1, 1, 2, 0, 0, 3, 1, 2, 0, 4, 0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 1, 2, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 5, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
Offset: 1
First few rows of the triangle =
1
1, 2
0, 0, 3
1, 2, 0, 4
0, 0, 0, 0, 5
0, 0, 3, 0, 0, 6
0, 0, 0, 0, 0, 0, 7
1, 2, 0, 4, 0, 0, 0, 8
0, 0, 0, 0, 0, 0, 0, 0, 9
0, 0, 0, 0, 5, 0, 0, 0, 0, 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11
0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
...
Comments