cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A178197 Smallest k such that 36^k mod k = n.

Original entry on oeis.org

1, 5, 17, 11, 34, 31, 10, 29, 14, 213, 13, 1585, 39, 23, 1282, 21, 20, 19, 142, 56413361, 22, 445, 26, 169, 87, 341, 50, 33, 332, 33607, 57, 55329163, 158, 46623, 1262, 33763, 37, 167987937385549, 74, 123, 284, 12091, 51, 119, 626, 531, 2630, 960641, 104, 473, 98, 75, 116, 424381, 174, 7751, 62, 951, 781, 364789, 206, 545, 1234, 93, 77, 205591, 78, 51367, 614, 159, 1226, 623, 207, 23147, 94, 11847, 100, 3551, 161, 332089, 176, 99, 143, 361841, 202, 73969, 590, 129, 302
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[36, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

Extensions

Terms a(37) onward from Max Alekseyev, May 07 2012

A178198 Smallest k such that 37^k mod k = n.

Original entry on oeis.org

1, 2, 5, 17, 11, 22, 31, 25, 29, 10, 51, 13, 2585, 15, 23, 1354, 3157, 26, 19, 30, 14366417, 332, 85, 55, 510647, 44, 341, 122, 135, 52, 49, 33, 27905, 136, 141, 46, 55319, 41, 115, 190, 50613, 166, 205, 75, 252701, 284, 203, 1322, 395, 50, 1247
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[37, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

A178199 Smallest k such that 38^k mod k = n.

Original entry on oeis.org

1, 37, 3, 5, 6, 11, 1438, 31, 9, 29, 18, 45021, 13, 5249, 22, 23, 20, 69, 25, 437, 21, 227643018837677, 42, 141, 50, 19877, 27, 121, 36, 303, 98, 49, 75, 329, 94, 261, 116, 9200543, 39, 87541720241623, 52, 1119, 1402, 510025, 356, 24829, 466, 51
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[38, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa
    sk[n_]:=Module[{k=1},While[PowerMod[38,k,k]!=n,k++];k]; Array[sk,50,0] (* Harvey P. Dale, Mar 14 2015 *)

Extensions

Terms a(21) onward from Max Alekseyev, Apr 22 2012

A178200 Smallest k such that 39^k mod k = n.

Original entry on oeis.org

1, 2, 37, 6, 5, 17, 11, 1514, 31, 12, 29, 70, 159, 26, 85, 21, 23, 94, 33, 1502, 779, 30, 253529023201, 214, 25, 28, 299, 54, 2905241561, 115, 77, 298, 96172711, 48, 13243955, 1486, 63, 106, 1841252062709911, 41, 13343, 74, 59277, 1478, 119, 82, 697, 134, 69, 176, 70961, 150, 481, 116, 55, 1466, 3161, 84, 437, 86, 511, 146, 13787, 153, 90224135, 104, 6789, 1454, 140459, 132, 958471, 1303310, 87, 362, 175, 482, 1369, 244, 93, 98, 2501, 88, 119239, 1438, 1077, 692, 2258141, 102, 9066799, 358, 99, 130, 46859, 506, 121, 217, 187, 124, 163067, 105, 40649
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[39, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa

Extensions

Terms a(22) onward from Max Alekseyev, Feb 04 2012, Apr 13 2012

A178201 Smallest k such that 40^k mod k = n.

Original entry on oeis.org

1, 3, 19, 37, 6, 7, 17, 11, 92, 31, 15, 29, 794, 21, 26, 215, 22, 23, 98, 49, 124, 19849, 42, 12405874306277, 284, 75, 1574, 221, 36, 323, 70, 119, 56, 133, 58, 685, 44, 69, 142, 187, 41, 31561, 82, 3197, 148, 10073, 51, 511, 176, 37603, 62, 437, 86, 1339, 1546, 63, 386, 12599, 138, 3017, 140, 493, 1538, 529, 72, 935, 118, 303, 253, 277061, 95
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[40, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa

Extensions

Terms a(23) onward from Max Alekseyev, Mar 19 2012

A321364 Positive integers m such that 13^m == 12 (mod m).

Original entry on oeis.org

1, 13757837, 6969969233, 514208575135
Offset: 1

Views

Author

Max Alekseyev, Nov 07 2018

Keywords

Comments

No other terms below 10^15.
Some larger terms: 14551705803598782884189, 268766423508299769671017810348321281664525668552158231.

Crossrefs

Solutions to 13^m == k (mod m): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), this sequence (k=12), A321365 (k=14), A116639 (k=15).

Programs

A321365 Positive integers n such that 13^n == 14 (mod n).

Original entry on oeis.org

1, 5805311, 392908759, 399614833907, 2674764845549, 21997277871211, 67146783889057
Offset: 1

Views

Author

Max Alekseyev, Nov 08 2018

Keywords

Comments

No other terms below 10^15.

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), A321364 (k=12), this sequence (k=14), A116639 (k=15).

Programs

A177496 a(n) is the least k such that the remainder when 1000^k is divided by k is n.

Original entry on oeis.org

3, 62, 997, 6, 115, 7, 51, 14, 991, 11, 23, 13, 21, 17, 197, 24, 983, 158, 109, 35, 89, 42, 977, 61, 39, 34, 139, 36, 971, 38, 3291, 188, 967, 66, 193, 92, 57, 74, 999161, 52, 137, 479, 69, 239, 191, 53, 953, 49, 317, 70, 73, 79, 947, 65291, 63, 59, 448991, 114, 941
Offset: 1

Views

Author

Alexander Adamchuk, May 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {98}]; k = 1; While[k < 10000000, a = PowerMod[1000, k, k]; If[a < 99 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
    lk[n_]:=Module[{k=1},While[PowerMod[1000,k,k]!=n,k++];k]; Array[lk,60] (* Harvey P. Dale, Jul 21 2021 *)
Previous Showing 41-48 of 48 results.