cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 55 results. Next

A245442 Numbers n such that (50^n - 1)/49 is prime.

Original entry on oeis.org

3, 5, 127, 139, 347, 661, 2203, 6521, 210319
Offset: 1

Views

Author

Robert Price, Jul 22 2014

Keywords

Comments

a(9) > 10^5.
All terms are prime.

Crossrefs

Programs

Extensions

a(9)=210319 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A181987 Numbers n such that (39^n - 1)/38 is prime.

Original entry on oeis.org

349, 631, 4493, 16633, 36341
Offset: 1

Views

Author

Robert Price, Apr 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(39^#-1)/38]&]
  • PARI
    is(n)=ispseudoprime((39^n-1)/38) \\ Charles R Greathouse IV, Jun 13 2017

A294722 Numbers k such that (44^k - 1)/43 is prime.

Original entry on oeis.org

5, 31, 167, 100511
Offset: 1

Views

Author

Paul Bourdelais, Nov 07 2017

Keywords

Comments

The number corresponding to a(4) is a probable prime.
These are the indices of base-44 repunit primes, i.e., numbers k such that A002275(k) interpreted as a base-44 number and converted to decimal is prime. - Felix Fröhlich, Nov 08 2017

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[(44^# - 1)/43], #, Nothing] &, Prime@Range @ 10000] (* Robert G. Wilson v, Nov 25 2017 *)
  • PARI
    is(n) = ispseudoprime((44^n-1)/43) \\ Felix Fröhlich, Nov 08 2017
  • PFGW
    ABC2 (44^$a-1)/43 // -f{2*$a}
    a: primes from 2 to 1000000
    

A376329 Numbers k such that (45^k - 2^k)/43 is prime.

Original entry on oeis.org

2, 7, 89, 167, 8101, 96517
Offset: 1

Views

Author

Robert Price, Nov 19 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(45^# - 2^#)/43] &]

A376470 Numbers k such that (29^k - 2^k)/27 is prime.

Original entry on oeis.org

2, 7, 139, 983, 3257, 10181, 26387, 36187, 42557
Offset: 1

Views

Author

Robert Price, Sep 24 2024

Keywords

Comments

The definition implies that k must be a prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(29^# - 2^#)/27] &]

A377180 Numbers k such that (43^k - 2^k)/41 is prime.

Original entry on oeis.org

167, 797, 1009, 54941
Offset: 1

Views

Author

Robert Price, Oct 18 2024

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(43^# - 2^#)/41] &]

A377699 Numbers k such that (35^k - 2^k)/33 is prime.

Original entry on oeis.org

2, 17, 53, 211, 4013, 55207
Offset: 1

Views

Author

Robert Price, Nov 05 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(35^# - 2^#)/33] &]

A377718 Numbers k such that (41^k - 2^k)/39 is prime.

Original entry on oeis.org

2, 41, 97, 131, 2411, 7321
Offset: 1

Views

Author

Robert Price, Nov 04 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(41^# - 2^#)/39] &]

A377779 Numbers k such that (31^k - 2^k)/29 is prime.

Original entry on oeis.org

5, 17, 541, 701, 769
Offset: 1

Views

Author

Robert Price, Nov 06 2024

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(31^# - 2^#)/29] &]

A377800 Numbers k such that (33^k - 2^k)/31 is prime.

Original entry on oeis.org

71, 103, 1213, 2441, 2789, 4159
Offset: 1

Views

Author

Robert Price, Nov 07 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(33^# - 2^#)/31] &]
Previous Showing 11-20 of 55 results. Next