A245442
Numbers n such that (50^n - 1)/49 is prime.
Original entry on oeis.org
3, 5, 127, 139, 347, 661, 2203, 6521, 210319
Offset: 1
Cf.
A028491,
A004061,
A004062,
A004063,
A004023,
A005808,
A004064,
A016054,
A006032,
A006033,
A006034,
A006035,
A127995,
A127996,
A127997,
A127998,
A127999,
A098438,
A128002,
A128003,
A128004,
A128005,
A240765,
A242797,
A243279,
A245237.
a(9)=210319 corresponds to a probable prime discovered by
Paul Bourdelais, Aug 04 2020
A181987
Numbers n such that (39^n - 1)/38 is prime.
Original entry on oeis.org
349, 631, 4493, 16633, 36341
Offset: 1
Cf.
A028491,
A004061,
A004062,
A004063,
A004023,
A005808,
A004064,
A016054,
A006032,
A006033,
A006034,
A006035,
A127995,
A127996,
A127997,
A127998,
A127999,
A098438,
A128002,
A128003,
A128004,
A128005.
-
Select[Prime[Range[100000]], PrimeQ[(39^#-1)/38]&]
-
is(n)=ispseudoprime((39^n-1)/38) \\ Charles R Greathouse IV, Jun 13 2017
A294722
Numbers k such that (44^k - 1)/43 is prime.
Original entry on oeis.org
5, 31, 167, 100511
Offset: 1
Cf.
A028491,
A004061,
A004062,
A004063,
A004023,
A005808,
A004064,
A016054,
A006032,
A006033,
A006034,
A006035,
A127995,
A127996,
A127997,
A127998,
A127999,
A098438,
A128002,
A128003,
A128004,
A128005,
A240765.
-
ParallelMap[ If[ PrimeQ[(44^# - 1)/43], #, Nothing] &, Prime@Range @ 10000] (* Robert G. Wilson v, Nov 25 2017 *)
-
is(n) = ispseudoprime((44^n-1)/43) \\ Felix Fröhlich, Nov 08 2017
-
ABC2 (44^$a-1)/43 // -f{2*$a}
a: primes from 2 to 1000000
A376329
Numbers k such that (45^k - 2^k)/43 is prime.
Original entry on oeis.org
2, 7, 89, 167, 8101, 96517
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A376470
Numbers k such that (29^k - 2^k)/27 is prime.
Original entry on oeis.org
2, 7, 139, 983, 3257, 10181, 26387, 36187, 42557
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236.
A377180
Numbers k such that (43^k - 2^k)/41 is prime.
Original entry on oeis.org
167, 797, 1009, 54941
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A377699
Numbers k such that (35^k - 2^k)/33 is prime.
Original entry on oeis.org
2, 17, 53, 211, 4013, 55207
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A377718
Numbers k such that (41^k - 2^k)/39 is prime.
Original entry on oeis.org
2, 41, 97, 131, 2411, 7321
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A377779
Numbers k such that (31^k - 2^k)/29 is prime.
Original entry on oeis.org
5, 17, 541, 701, 769
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A377800
Numbers k such that (33^k - 2^k)/31 is prime.
Original entry on oeis.org
71, 103, 1213, 2441, 2789, 4159
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
Comments