cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 66 results. Next

A267171 Growth series for affine Coxeter group B_8.

Original entry on oeis.org

1, 9, 44, 157, 458, 1158, 2629, 5486, 10695, 19711, 34651, 58507, 95404, 150908, 232389, 349445, 514393, 742832, 1054283, 1472911, 2028333, 2756518, 3700784, 4912897, 6454277, 8397316, 10826813, 13841530, 17555875, 22101717, 27630339, 34314534, 42350849, 51961982, 63399337, 76945741, 92918329, 111671603, 133600669, 159144658, 188790335
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267172 Growth series for affine Coxeter group B_9.

Original entry on oeis.org

1, 10, 54, 211, 669, 1827, 4456, 9942, 20637, 40348, 74999, 133506, 228910, 379818, 612207, 961652, 1476045, 2218878, 3273169, 4746115, 6774561, 9531380, 13232864, 18147232, 24604366, 33006891, 43842720, 57699190, 75278921, 97417535, 125103378, 159499393, 201967298, 254094228, 317722005, 394979205, 488316197, 600543335, 734872490
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267173 Growth series for affine Coxeter group B_10.

Original entry on oeis.org

1, 11, 65, 276, 945, 2772, 7228, 17170, 37807, 78155, 153154, 286660, 515570, 895388, 1507595, 2469247, 3945292, 6164170, 9437339, 14183455, 20958025, 30489449, 43722470, 61870160, 86475684, 119485204, 163333410, 221043295, 296341927, 393794113, 518955998, 678550795, 880669001, 1134995618, 1453067068, 1848560666, 2337619696, 2939217322
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A267174 Growth series for affine Coxeter group B_11.

Original entry on oeis.org

1, 12, 77, 353, 1298, 4070, 11298, 28468, 66275, 144430, 297584, 584244, 1099814, 1995202, 3502797, 5972044, 9917336, 16081506, 25518845, 39702300, 60660325, 91149775, 134872255, 196742469, 283218364, 402704237, 566039474, 787087225, 1083439094, 1477253844, 1996250190, 2674875984, 3555678491, 4690903019, 6144349905, 7993522778
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A161697 Number of reduced words of length n in the Weyl group B_4.

Original entry on oeis.org

1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..4]])/(1-t)^4)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..4),x,n+1), x, n), n = 0 .. 100); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,4}] /(1-x)^4, {x,0,16}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^17); Vec(prod(k=1,4,1-t^(2*k))/(1-t)^4) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161698 Number of reduced words of length n in the Weyl group B_5.

Original entry on oeis.org

1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..5]])/(1-t)^5)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..5),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,5}] /(1-x)^5, {x,0,25}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^26); Vec(prod(k=1,5,1-t^(2*k))/(1-t)^5) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161977 Number of reduced words of length n in the Weyl group B_31.

Original entry on oeis.org

1, 31, 495, 5425, 45879, 319145, 1900920, 9965384, 46909324, 201295028, 796809245, 2937251395, 10161553364, 33205476524, 103050077489, 305131440111, 865481871426, 2359754902590, 6203436293890, 15765840836350, 38828731002622
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161987 Number of reduced words of length n in the Weyl group B_32.

Original entry on oeis.org

1, 32, 527, 5952, 51831, 370976, 2271896, 12237280, 59146604, 260441632, 1057250877, 3994502272, 14156055636, 47361532160, 150411609649, 455543049760, 1321024921186, 3680779823776, 9884216117666, 25650056954016
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161988 Number of reduced words of length n in the Weyl group B_33.

Original entry on oeis.org

1, 33, 560, 6512, 58343, 429319, 2701215, 14938495, 74085099, 334526731, 1391777608, 5386279880, 19542335516, 66903867676, 217315477325, 672858527085, 1993883448271, 5674663272047, 15558879389713, 41208936343729
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161991 Number of reduced words of length n in the Weyl group B_34.

Original entry on oeis.org

1, 34, 594, 7106, 65449, 494768, 3195983, 18134478, 92219577, 426746308, 1818523916, 7204803796, 26747139312, 93651006988, 310966484313, 983825011398, 2977708459669, 8652371731716, 24211251121429, 65420187465158
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Previous Showing 41-50 of 66 results. Next