cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A128371 a(n) = least k such that the remainder when 31^k is divided by k is n.

Original entry on oeis.org

2, 29, 7, 29787, 13, 113413, 51, 23, 11, 3309, 38, 19, 21, 17, 22, 115, 118, 37237, 261, 60212617, 94, 29769, 134, 51205605391, 26, 35, 209, 549, 466, 1558391, 37, 5033228393, 58, 39, 926, 565, 57, 1561, 922, 119, 46, 2512157, 111, 949, 76, 85
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4750000000, a = PowerMod[31, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

Extensions

More terms from Ryan Propper, Mar 24 2007
a(494) = 14353729267 = 64609 * 222163. a(498) = 9547024387, a(540) = 29711794103. - Daniel Morel, Jun 17 2010. a(618) = 15150617101, a(750) = 13728669221. - Daniel Morel, Jun 28 2010

A128369 a(n) = least k such that the remainder when 29^k is divided by k is n.

Original entry on oeis.org

2, 3, 13, 5, 22, 23, 11, 9, 26, 19, 51, 17, 46, 15, 118, 178523, 152, 92634008921, 102, 24369, 82, 2873, 93, 25, 34, 27, 74, 11227, 31, 39259, 830, 69, 136, 817, 62, 2429, 66, 24351, 802, 121, 184, 3405997613, 714, 45, 398, 5846879, 794, 221, 114
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

a(408) = 9848641373 = 60343 * 163211.
a(756) = 10012502599 = 11 * 19 * 47906711.
a(886) = 12256265747, a(966) = 10085567837. - Daniel Morel, Jun 08 2010
a(378) = 31113438371, a(492) = 18377996647, a(730) = 22778710711. - Daniel Morel, Jul 05 2010
a(802) = 20290196677, a(826) = 21466370573. - Daniel Morel, Aug 24 2010

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[29, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

A178194 Smallest k such that 33^k mod k = n.

Original entry on oeis.org

1, 2, 31, 5, 29, 7, 21, 13, 13684967, 10, 23, 14, 15, 538, 19, 42, 17, 35, 25, 49, 16861, 60, 55, 26, 1157, 38, 511, 54, 30197665, 106, 14691, 46, 155, 37, 18791, 62, 369, 164, 145, 93, 63517, 92, 115, 1046, 3113077, 58, 1376107, 1042, 105, 50, 221
Offset: 0

Views

Author

Artur Jasinski, May 22 2010

Keywords

Comments

smallest k such that m^k mod k = n
m=2 see A036236
m=3 see A078457
m=4 see A119678
m=5 see A119679
m=6 see A127816
m=7 see A119715
m=8 see A119714
m=9 see A127817
m=10 see A127818
m=11 see A127819
m=12 see A127820
m=13 see A127821
m=14 see A128154
m=15 see A128155
m=16 see A128156
m=17 see A128157
m=18 see A128158
m=19 see A128159
m=20 see A128160
m=21 see A128361
m=22 see A128362
m=23 see A128363
m=24 see A128364
m=25 see A128365
m=26 see A128366
m=27 see A128367
m=28 see A128368
m=29 see A128369
m=30 see A128370
m=31 see A128371
m=32 see A128372
m=33 see A178194
m=34 see A178195
m=35 see A178196
m=36 see A178197
m=37 see A178198
m=38 see A178199
m=39 see A178200
m=40 see A178201
m=41 see A178202

Crossrefs

see comment line.

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[33, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

A128370 a(n) = least k such that the remainder of 30^k divided by k is n.

Original entry on oeis.org

29, 7, 26997, 13, 8471, 33, 23, 11, 721, 55, 19, 39, 17, 886, 21, 26, 803, 98, 13289, 22, 51, 878, 1141, 146, 35, 38, 111, 218, 515267673651961, 31, 3212679202339, 56, 267, 866, 4367, 42, 10129, 862, 57, 86, 42691, 13479, 949, 214, 95, 77, 7633, 52, 1469, 170, 429, 68, 2791229, 94, 215, 422, 3849, 842, 9773, 140
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 5100000000, a = PowerMod[30, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

Extensions

Terms a(29) onward from Max Alekseyev, Mar 22 2012

A177495 a(n) is the least k such that the remainder when 100^k is divided by k is n.

Original entry on oeis.org

3, 7, 97, 6, 19, 38, 31, 23, 13, 15, 89, 22, 29, 43, 17, 24, 83, 41, 19003, 580, 79, 42, 1903, 58, 35, 37, 73, 36, 71, 49, 999969, 56, 67, 66, 145, 76, 411, 578, 61, 60, 59, 494, 51, 262, 55, 158, 53, 52, 57, 398, 15673, 69, 1589, 9946, 65, 88, 20940211, 366, 391
Offset: 1

Views

Author

Alexander Adamchuk, May 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {70}]; k = 1; While[k < 210000000, a = PowerMod[100, k, k]; If[a < 71 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
    Table[Module[{k=1},While[PowerMod[100,k,k]!=n,k++];k],{n,60}] (* Harvey P. Dale, Jun 06 2018 *)

A177496 a(n) is the least k such that the remainder when 1000^k is divided by k is n.

Original entry on oeis.org

3, 62, 997, 6, 115, 7, 51, 14, 991, 11, 23, 13, 21, 17, 197, 24, 983, 158, 109, 35, 89, 42, 977, 61, 39, 34, 139, 36, 971, 38, 3291, 188, 967, 66, 193, 92, 57, 74, 999161, 52, 137, 479, 69, 239, 191, 53, 953, 49, 317, 70, 73, 79, 947, 65291, 63, 59, 448991, 114, 941
Offset: 1

Views

Author

Alexander Adamchuk, May 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {98}]; k = 1; While[k < 10000000, a = PowerMod[1000, k, k]; If[a < 99 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
    lk[n_]:=Module[{k=1},While[PowerMod[1000,k,k]!=n,k++];k]; Array[lk,60] (* Harvey P. Dale, Jul 21 2021 *)
Previous Showing 11-16 of 16 results.