cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A271114 Expansion of (1+x)*(2+x)/(1-x)^2.

Original entry on oeis.org

2, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325
Offset: 0

Views

Author

Colin Barker, Mar 31 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{2}, LinearRecurrence[{2, -1}, {7, 13}, 100]] (* G. C. Greubel, Mar 31 2016 *)
  • PARI
    Vec((1+x)*(2+x)/(1-x)^2 + O(x^70))

Formula

G.f.: (1+x)*(2+x)/(1-x)^2.
a(n) = A270700(n)/6.
a(n) = 6*n+1 = A016921(n) for n>0.
a(n) = 2*a(n-1)-a(n-2) for n>2.
E.g.f.: 1 + (1+6*x)*exp(x). - G. C. Greubel, Mar 31 2016
From Bruno Berselli and G. C. Greubel, Mar 31 2016: (Start)
a(5*m+1) = 30*m + 7 = A132231(m+1).
a(5*m+2) = 30*m + 13 = A082369(m+1).
a(5*m+3) = 30*m + 19 = A156376(m).
a(5*m+4) = 30*m + 25 = 5*A016969(m).
a(5*m+5) = 30*m + 31 = A128470(m+1). (End)
a(n) = A100764(n+3) for n >= 1. - Georg Fischer, Oct 30 2018

A051646 Primes of the form 30*p + 1 where p is also prime.

Original entry on oeis.org

61, 151, 211, 331, 571, 691, 1231, 1291, 1831, 2011, 2131, 2371, 2671, 3271, 3391, 3931, 4111, 5011, 5431, 5791, 6691, 6871, 6991, 8311, 8431, 9391, 9511, 9931, 10111, 10771, 11491, 13171, 13291, 13711, 13831, 14011, 14731, 15091, 15271, 16231, 16411, 17791, 17971
Offset: 1

Views

Author

Keywords

Comments

Analogous to A005385, safe primes. Can be called 30-safe primes.

Examples

			61 is in the sequence because both 2 and 30*2 + 1 = 61 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[30 * Prime[Range[120]] + 1, PrimeQ] (* Amiram Eldar, Feb 24 2025 *)
  • PARI
    isok(k) = isprime(k) && k % 30 == 1 && isprime((k-1)/30); \\ Amiram Eldar, Feb 24 2025

Formula

a(n) = A128470(A051645(n)) = 30 * A051645(n) + 1. - Amiram Eldar, Feb 24 2025

A375646 Products of prime 8-tuples (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26) where p = A022011(n).

Original entry on oeis.org

35336848261, 3806030828359338048562146944333316580734237696172777384261, 187864049264599549789422153639990042809117925774238076689261, 5904346651213195922822968174735596082317962321492475630960754261, 1225364761514380727859407545185568342040426059188911173818624004261
Offset: 1

Views

Author

Michael De Vlieger, Aug 24 2024

Keywords

Comments

Primes p in A022011 belong to 11 (mod 210), thus a(n) is congruent to the product of residues {11, 13, 17, 19, 23, 29, 31, 37} (mod 210), i.e., 1 (mod 210).
Gaps between primes are {2, 4, 2, 4, 6, 2, 6}.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 7]] &, Import["https://oeis.org/A022011/b022011.txt", "Data"][[;; 12, -1]] ]

A375647 Products of prime 8-tuples (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26) where p = A022012(n).

Original entry on oeis.org

435656388001, 7667061486004435747476001, 26887071293271756518203932603297162186001, 1967190066500349361284627627321478140655499961186001, 34207121652717644163491129612663352350226660003697376196001, 131790860746164880099394335252801389818740796081899944471402001
Offset: 1

Views

Author

Michael De Vlieger, Aug 24 2024

Keywords

Comments

Primes p in A022012 belong to either 17 or 167 (mod 210).
Therefore a(n) is either congruent to the product of residues {17, 19, 23, 29, 31, 37, 41, 43} (mod 210), or {167, 169, 173, 179, 181, 187, 191, 193} (mod 210), so a(n) is congruent to 121 (mod 210).
Gaps between prime factors have a symmetric arrangement {2, 4, 6, 2, 6, 4, 2}.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 7]] &, Import["https://oeis.org/A022012/b022012.txt", "Data"][[;; 12, -1]]]

A375648 Products of prime 8-tuples (p, p+6, p+8, p+14, p+18, p+20, p+24, p+26) where p = A022013(n).

Original entry on oeis.org

3868985835982814590518552822749329543261, 43207320984601757696213691690377119115644261, 287530494211069388143263747303929618940138523261, 2991325021830996455943969680355510324042937309261, 3433715221252595293789329211184553889095776281330363261, 523198428668721638888114210837839571392856841008842698982189261
Offset: 1

Views

Author

Michael De Vlieger, Aug 24 2024

Keywords

Comments

Primes p in A022013 belong to 173 (mod 210). Thus a(n) is congruent to the product of residues {173, 179, 181, 187, 191, 193, 197, 199} (mod 210), i.e., 1 (mod 210).
Gaps between primes are {6, 2, 6, 4, 2, 4, 2}.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 7]] &, Import["https://oeis.org/A022013/b022013.txt", "Data"][[;; 12, -1]]]

A330670 Squares of primes congruent to 1 (mod 30).

Original entry on oeis.org

121, 361, 841, 961, 1681, 3481, 3721, 5041, 6241, 7921, 10201, 11881, 17161, 19321, 22201, 22801, 32041, 32761, 36841, 39601, 44521, 52441, 57121, 58081, 63001, 72361, 73441, 78961, 96721, 109561, 121801, 128881, 143641, 151321, 166801, 167281, 175561
Offset: 1

Views

Author

Harry E. Neel, Dec 24 2019

Keywords

Comments

Sequence lists squares of prime numbers that end in 1 or 9.

Examples

			Prime 11*11=121 and 19*19=361; 121 and 361 are terms of this sequence.
Prime 13*13=169 and 17*17=289; 169 and 289 are not terms of this sequence.
		

Crossrefs

Intersection of A001248 and A128470.

Programs

  • Mathematica
    Select[Range[360], PrimeQ[#] && Mod[#^2, 30] == 1 &]^2 (* Amiram Eldar, Dec 28 2019 *)
  • PARI
    isok(m) = issquare(m) && isprime(sqrtint(m)) && ((m % 30) == 1); \\ Michel Marcus, Dec 26 2019
Previous Showing 11-16 of 16 results.