cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A335054 Infinitary barely abundant numbers: infinitary abundant numbers whose infinitary abundancy is closer to 2 than that of any smaller infinitary abundant number.

Original entry on oeis.org

24, 30, 40, 54, 56, 70, 88, 104, 642, 654, 678, 726, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1014, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1398, 1434, 1446, 1506, 1536, 1542, 1578, 1596, 2406, 2454, 2514, 2526, 2586, 2598, 2634
Offset: 1

Views

Author

Amiram Eldar, May 21 2020

Keywords

Comments

The infinitary abundancy of a number k is isigma(k)/k, where isigma(k) is the sum of infinitary divisors of k (A049417).

Examples

			The infinitary abundancies of the first terms are 2.5, 2.4, 2.25, 2.222..., 2.142..., 2.057..., ...
		

Crossrefs

The infinitary version of A071927.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; seq = {}; r = 3; Do[s = isigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 3000}]; seq

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A357685 Numbers k such that A293228(k) > k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 114, 132, 138, 140, 156, 174, 186, 204, 210, 222, 228, 246, 258, 276, 282, 318, 330, 348, 354, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564, 570, 582, 606, 618, 636, 642, 654, 660, 678, 690
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2022

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 7, 79, 843, 8230, 83005, 826875, 8275895, 82790525, 827718858, 8276571394, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0827... .

Examples

			30 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15} and their sum is 42 > 30.
60 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15, 30} and their sum is 72 > 60.
		

Crossrefs

Disjoint union of A087248 and A357686.
Subsequence of A005101.

Programs

  • Mathematica
    s[n_] := Times @@ (1 + (f = FactorInteger[n])[[;; , 1]]) - If[AllTrue[f[[;;, 2]], # == 1 &], n, 0]; Select[Range[2, 1000], s[#] > # &]
  • PARI
    is(n) = {my(f = factor(n), s); s = prod(i=1, #f~, f[i,1]+1); if(n==1 || vecmax(f[,2]) == 1, s -= n); s > n};

A348523 Numbers that are both infinitary and noninfinitary abundant numbers.

Original entry on oeis.org

960, 1440, 1800, 2016, 2400, 2940, 3240, 3528, 3780, 4536, 4860, 6720, 7260, 8640, 10080, 10140, 10560, 12096, 12480, 12600, 13860, 14784, 15120, 15360, 15840, 16320, 16380, 16800, 17472, 17640, 18240, 18480, 18720, 18900, 19008, 19800, 20160, 21420, 21600, 21840
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2021

Keywords

Comments

Apparently, the smallest odd term is 9170790153525.

Examples

			960 is a term since A049417(960) = 2040 > 2*960 = 1920 and A348271(960) = 1008 > 960.
		

Crossrefs

Intersection of A129656 and A348274.
Subsequence of A068403.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := (i = isigma[n]) > 2*n && DivisorSigma[1, n] - i > n; Select[Range[10^4], q]

A360525 Numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 114, 120, 126, 132, 138, 140, 150, 156, 168, 174, 180, 186, 204, 210, 222, 228, 246, 252, 258, 276, 282, 294, 300, 318, 330, 348, 354, 360, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A308127 at n = 15.
Analogous to abundant numbers (A005101) with A360522 instead of A000203.
Subsequence of A005101 because A360522(n) <= A000203(n) for all n.
The least odd term is a(1698) = A360526(1) = 15015.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 8, 95, 1135, 10890, 110867, 1104596, 11048123, 110534517, 1105167384, 11051009278, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1105...

Examples

			30 is a term since A360522(30) = 72 > 2*30.
		

Crossrefs

Subsequence of A005101.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1000], q]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}

A374788 Numbers whose infinitary divisors have a mean infinitary abundancy index that is larger than 2.

Original entry on oeis.org

7560, 9240, 10920, 83160, 98280, 120120, 120960, 128520, 143640, 147840, 154440, 157080, 173880, 174720, 175560, 185640, 189000, 190080, 201960, 207480, 212520, 216216, 219240, 224640, 225720, 228480, 231000, 234360, 238680, 251160, 255360, 266112, 266760, 267960
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

Numbers k such that A374786(k)/A374787(k) > 2.
The least odd term is 17737266779965459404793703604641625, and the least term that is coprime to 6 is 5^7 * (7 * 11 * ... * 23)^3 * 29 * 31 * ... * 751 = 3.140513... * 10^329.

Examples

			7560 is a term since A374786(7560)/A374787(7560) = 1045/512 = 2.041... > 2.
		

Crossrefs

Similar sequences: A245214, A374785.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)])); q[1] = False; q[n] := Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n]))) > 2; Select[Range[300000], q]
  • PARI
    is(n) = {my(f = factor(n), b); prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1))) > 2;}

A372300 Numbers k such that k and k+1 are both primitive infinitary abundant numbers (definition 1, A372298).

Original entry on oeis.org

812889, 3181815, 20787584, 181480695, 183872535, 307510664, 337206344, 350158808, 523403264, 744074624, 868421504, 1063361144, 1955365125, 2076191864, 2578966215, 3672231255, 4185590408, 5032685384, 7158001304, 8348108535, 10784978295, 16264812135, 20917209495, 24514454055
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Comments

The corresponding sequence with definition 2 (A372299) coincides with this sequence for the first 24 terms.

Crossrefs

Subsequence of A129656, A327635 and A372298.
Cf. A372299.
Similar sequences: A283418, A330872, A361935.

Programs

  • PARI
    isidiv(d, f) = {my(bne,bde); if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    isab(n) = isigma(n) > 2*n;
    isprim(n) = select(x -> x= 2*x, idivs(n)) == [];
    lista(kmax) = {my(is1 = 0, is2); for(k = 2, kmax, is2 = isab(k); if(is1 && is2, if(isprim(k-1) && isprim(k), print1(k-1, ", "))); is1 = is2);}
Previous Showing 21-27 of 27 results.