Original entry on oeis.org
1, 2, 5, 10, 20, 36, 65, 112, 193, 324, 544, 900, 1489, 2442, 4005, 6534, 10660, 17336, 28193, 45760, 74273, 120408, 195200, 316216, 512257, 829458, 1343077, 2174130, 3519412, 5696124, 9219105, 14919408, 24144289
Offset: 1
-
LinearRecurrence[{2,1,-3,1,-1,0,1},{1,2,5,10,20,36,65},40] (* Harvey P. Dale, Jun 30 2025 *)
A230449
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A052952(n), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 5, 4, 1, 4, 8, 9, 8, 1, 5, 12, 17, 17, 12, 1, 6, 17, 29, 34, 29, 21, 1, 7, 23, 46, 63, 63, 50, 33, 1, 8, 30, 69, 109, 126, 113, 83, 55, 1, 9, 38, 99, 178, 235, 239, 196, 138, 88, 1, 10, 47, 137, 277, 413, 474, 435, 334, 226, 144
Offset: 0
The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 1
2| 1, 2, 3
3| 1, 3, 5, 4
4| 1, 4, 8, 9, 8
5| 1, 5, 12, 17, 17, 12
6| 1, 6, 17, 29, 34, 29, 21
7| 1, 7, 23, 46, 63, 63, 50, 33
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 1, 3, 4, 8, 12, 21, 33
1| 1, 2, 5, 9, 17, 29, 50, 83
2| 1, 3, 8, 17, 34, 63, 113, 196
3| 1, 4, 12, 29, 63, 126, 239, 435
4| 1, 5, 17, 46, 109, 235, 474, 909
5| 1, 6, 23, 69, 178, 413, 887, 1796
6| 1, 7, 30, 99, 277, 690, 1577, 3373
7| 1, 8, 38, 137, 414, 1104, 2681, 6054
-
T:= proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2) - (1-(-1)^n)/2) else procname(n-1,k-1)+procname(n-1,k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k): add(A035317(k-p+n-k, k-2*p), p=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A215006
a(0)=0, a(n+1) is the least k>a(n) such that k+a(n)+n+1 is a Fibonacci number.
Original entry on oeis.org
0, 1, 2, 3, 6, 10, 18, 30, 51, 84, 139, 227, 371, 603, 980, 1589, 2576, 4172, 6756, 10936, 17701, 28646, 46357, 75013, 121381, 196405, 317798, 514215, 832026, 1346254, 2178294, 3524562, 5702871, 9227448, 14930335, 24157799, 39088151, 63245967, 102334136, 165580121
Offset: 0
For n + 1 = 7, a(n + 1) = 30 is the least k > a(n) = a(6) = 18 such that k + a(n) + n + 1 = 30 + 18 + 6 + 1 = 55 is a Fibonacci number. - _David A. Corneth_, Sep 03 2016
-
[n le 3 select n else Self(n)+Self(n-1)+Floor(n/2)-1: n in [0..40]]; // Bruno Berselli, Jul 31 2012
-
Join[{0}, LinearRecurrence[{2, 1, -3, 0, 1}, {1, 2, 3, 6, 10}, 39]] (* Jean-François Alcover, Oct 05 2017 *)
-
prpr = 0
prev = 1
fib = [0]*100
for n in range(100):
fib[n] = prpr
curr = prpr+prev
prpr = prev
prev = curr
a = 0
for n in range(1,55):
print(a, end=',')
b = c = 0
while c <= a:
c = fib[b] - a - n
b += 1
a=c
-
print(0, end=',')
prpr = 1
prev = 2
for n in range(3,56):
print(prpr, end=',')
curr = prpr+prev + n//2 - 1
prpr = prev
prev = curr
Comments