cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A130238 Partial sums of A130237.

Original entry on oeis.org

0, 2, 8, 20, 36, 61, 91, 126, 174, 228, 288, 354, 426, 517, 615, 720, 832, 951, 1077, 1210, 1350, 1518, 1694, 1878, 2070, 2270, 2478, 2694, 2918, 3150, 3390, 3638, 3894, 4158, 4464, 4779, 5103, 5436, 5778, 6129, 6489, 6858, 7236, 7623, 8019, 8424, 8838
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    [(&+[j*Floor(Log(3/2 +j*Sqrt(5))/Log((1+Sqrt(5))/2)): j in [0..n]]): n in [0..70]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    a[n_]:= a[n]= Sum[j*Floor[Log[GoldenRatio, 3/2 +j*Sqrt[5]]], {j,0,n}];
    Table[a[n], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    def A130238(n): return sum(j*int(log(3/2 +j*sqrt(5), golden_ratio)) for j in range(n+1))
    [A130238(n) for n in range(71)] # G. C. Greubel, Mar 18 2023

Formula

a(n) = Sum_{k=0..n} A130237(k).
a(n) = (n*(n+1)*A130233(n) - (Fib(A130233(n)) - 1)*(Fib(A130233(n) + 1) - 1))/2.
G.f.: (1/(1-x)^3)*Sum_{k>=1} (Fib(k)*(1-x) + x)*x^Fib(k).

A335741 Number of Pell numbers (A000129) <= n.

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Ovidiu Bagdasar, Jun 20 2020

Keywords

Comments

The sequence is constant on the interval A000129(k) < n <= A000129(k+1).

Examples

			The Pell numbers A000129 are 0,1,2,5,12,29,70,...
We have a(2)=a(3)=a(4)=3, since there are three Pell numbers less than or equal to 2,3 and 4, respectively.
		

Crossrefs

Cf. A000129 (Pell Numbers), A108852 (Fibonacci), A130245 (Lucas), A130253 (Jacobsthal).
Partial sums of A105349.

Programs

Formula

a(n) = 1+floor(log_alpha(2*sqrt(2)*n+1)), n>=0, where alpha=1+sqrt(2).

A345380 Number of Jacobsthal-Lucas numbers m <= n.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Ovidiu Bagdasar, Jun 16 2021

Keywords

Examples

			a(0)=0 since the least term in A014551 is 1.
a(1)=1 since A014551(0) = 2 is followed in that sequence by 1.
a(k)=2 for 2 <= k <= 4 since the first terms of A014551 are {2, 1, 5}.
		

Crossrefs

Cf. A014551, A108852 (Fibonacci), A130245 (Lucas), A130253.

Programs

  • Mathematica
    Block[{a = 1, b = -2, nn = 105, u, v = {}}, u = {2, a}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v]  (* or *)
    {0}~Join~Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, #]] &@ LinearRecurrence[{1, 2}, {2, 1}, 8] (* Michael De Vlieger, Jun 16 2021 *)
Previous Showing 11-13 of 13 results.