cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A199935 Size (b^3_n) of unit sphere in a certain graph (see Hazama article for precise definition).

Original entry on oeis.org

0, 0, 2, 5, 9, 14, 22, 36, 60, 99, 161, 260, 420, 680, 1102, 1785, 2889, 4674, 7562, 12236, 19800, 32039, 51841, 83880, 135720, 219600, 355322, 574925, 930249, 1505174, 2435422, 3940596, 6376020, 10316619, 16692641, 27009260, 43701900, 70711160, 114413062, 185124225
Offset: 2

Views

Author

N. J. A. Sloane, Nov 12 2011

Keywords

Programs

  • Mathematica
    CoefficientList[Series[-x^2*(-2+x)/((x-1)*(x^2-x+1)*(x^2+x-1)),{x,0,50}],x] (* Vincenzo Librandi, Jul 10 2012 *)
    LinearRecurrence[{3,-3,1,1,-1},{0,0,2,5,9},40] (* Harvey P. Dale, Jul 04 2013 *)

Formula

a(n) = 2*A130578(n-1) - A130578(n-2).
G.f.: -x^4*(-2+x) / ( (x-1)*(x^2-x+1)*(x^2+x-1) ). - R. J. Mathar, Nov 15 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - a(n-5), with a(2)=0, a(3)=0, a(4)=2, a(5)=5, a(6)=9. - Harvey P. Dale, Jul 04 2013

A201864 a(n) = ((F(n-1)+F(n-2))-1)/2 if F(n) is odd, otherwise a(n) = ((F(n-1)+F(n-2))-2)/2, where F(n) = A000045(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 6, 10, 16, 27, 44, 71, 116, 188, 304, 493, 798, 1291, 2090, 3382, 5472, 8855, 14328, 23183, 37512, 60696, 98208, 158905, 257114, 416019, 673134, 1089154, 1762288, 2851443, 4613732, 7465175, 12078908, 19544084, 31622992, 51167077, 82790070
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 06 2011

Keywords

Comments

See also similar sequence A130578.
Numbers whose Zeckendorf representation is a prefix of 100100100... . - Jeffrey Shallit, Jun 29 2024

Crossrefs

Programs

  • Magma
    [IsOdd(Fibonacci(n)) select (Fibonacci(n)-1)/2 else Fibonacci(n)/2-1: n in [1..41]];  // Bruno Berselli, Dec 14 2011
  • Maple
    a:= n-> (Matrix(5, (i, j)-> `if`(i=j-1, 1, `if`(i=5,
            [-1, -1, 1, 1, 1][j], 0)))^n. <<-1, 0, 0, 0, 1>>)[1, 1]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 13 2011
  • Mathematica
    CoefficientList[Series[x^3*(1+x)/((1-x)(1+x+x^2)(1-x-x^2)),{x,0,30}],x] (* Vincenzo Librandi, Mar 20 2012 *)

Formula

G.f.: x^4*(1+x)/((1-x)(1+x+x^2)(1-x-x^2)). - Alois P. Heinz, Dec 13 2011
a(n) = (1/2)*(A000045(n)-A131534(n+1)). - Bruno Berselli, Dec 14 2011
a(n) = F(n) - ceiling(F(n-1)/2) - ceiling(F(n-2)/2). - Chunqing Liu, Aug 21 2023

A209231 Number of binary words of length n such that there is at least one 0 and every run of consecutive 0's is of length >= 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 10, 15, 22, 33, 51, 80, 125, 193, 295, 449, 684, 1045, 1600, 2451, 3752, 5738, 8770, 13403, 20488, 31326, 47903, 73251, 112003, 171244, 261812, 400284, 612008, 935736, 1430709, 2187495, 3344566, 5113646, 7818463, 11953990
Offset: 0

Views

Author

Geoffrey Critzer, Jan 12 2013

Keywords

Examples

			a(5) = 3 because we have: {0,0,0,0,0}, {0,0,0,0,1}, {1,0,0,0,0}.
		

Crossrefs

Programs

  • Mathematica
    nn=40; a=x^4/(1-x); CoefficientList[Series[(a+1)/((1-a x/(1-x)))*1/(1-x)-1/(1-x), {x,0,nn}], x]

Formula

O.g.f.: x^4/((1-x)*(1-2*x+x^2-x^5)), see Mathematica code for unsimplified form.
Previous Showing 11-13 of 13 results.