cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A063289 Dimension of the space of weight n cuspidal newforms for Gamma_1( 16 ).

Original entry on oeis.org

-1, 2, 7, 11, 16, 20, 25, 29, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 83, 88, 92, 97, 101, 106, 110, 115, 119, 124, 128, 133, 137, 142, 146, 151, 155, 160, 164, 169, 173, 178, 182, 187, 191, 196, 200, 205, 209, 214, 218, 223, 227, 232, 236
Offset: 2

Views

Author

N. J. A. Sloane, Jul 14 2001

Keywords

Comments

It appears that for n > 2 a(n) = floor((9n-22)/2). - Gary Detlefs, Mar 02 2010

Crossrefs

Cf. A063232, A063233, A017185 (bisection), A130880, A332438.

Programs

  • Mathematica
    Join[{-1}, Table[9*n/2 + (-1)^n/4 - 45/4, {n, 3, 60}]] (* Amiram Eldar, Jan 12 2024 *)

Formula

a(n) = 9*n/2 + (-1)^n/4 - 45/4 for n >= 3, with first differences in A010710. - R. J. Mathar, Dec 06 2010
From M. F. Hasler, Mar 05 2012: (Start)
G.f.: x^2*(-1 + 3*x + 6*x^2 + x^3)/(1 - x - x^2 + x^3).
a(n+2) = a(n)+9 (n>2), a(2n+1) = a(2n)+4 (n>1), a(2n) = a(2n-1)+5 (n>1). (End)
Sum_{n>=3} (-1)^(n+1)/a(n) = cot(2*Pi/9)*Pi/9. - Amiram Eldar, Jan 12 2024
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=3} (1 - (-1)^n/a(n)) = 2*sin(Pi/18) + 1 (= A130880 + 1).
Product_{n>=3} (1 + (-1)^n/a(n)) = (1/2) * sec(Pi/9) (= A332438 - 3). (End)

A178959 Decimal expansion of the site percolation threshold for the (3,6,3,6) Kagome Archimedean lattice.

Original entry on oeis.org

6, 5, 2, 7, 0, 3, 6, 4, 4, 6, 6, 6, 1, 3, 9, 3, 0, 2, 2, 9, 6, 5, 6, 6, 7, 4, 6, 4, 6, 1, 3, 7, 0, 4, 0, 7, 9, 9, 9, 2, 4, 8, 6, 4, 5, 6, 3, 1, 8, 6, 1, 2, 2, 5, 5, 2, 7, 5, 1, 7, 2, 4, 3, 7, 3, 5, 8, 6, 8, 3, 5, 5, 7, 2, 1, 9, 7, 0, 5, 2, 9, 1, 5, 6, 9, 6, 6, 7, 7, 3, 6, 8, 5, 2, 0, 0, 8, 5, 1, 9, 7, 6
Offset: 0

Views

Author

Jonathan Vos Post, Dec 22 2012

Keywords

Comments

Consider an infinite graph where vertices are selected with probability p. The site percolation threshold is a unique value p_c such that if p > p_c an infinite connected component of selected vertices will almost surely exist, and if p < p_c an infinite connected component will almost surely not exist. This sequence gives p_c for the (3,6,3,6) Kagome Archimedean lattice.
This is one of the three real roots of x^3 - 3x^2 + 1. The other roots are 1 + A332437 = 2.879385241... and -(A332438 - 3) = - 0.5320888862... . - Wolfdieter Lang, Dec 13 2022

Examples

			0.652703644666139302296566746461370407999248645631861225527517243735868355...
		

Crossrefs

Programs

Formula

Equals 1 - 2*sin(Pi/18) = 1 = 1 - 2*cos(4*Pi/9) = 1 - A130880.

Extensions

a(98) corrected and more terms from Georg Fischer, Jun 06 2024

A357104 Decimal expansion of the real root of x^3 + 3*x - 1.

Original entry on oeis.org

3, 2, 2, 1, 8, 5, 3, 5, 4, 6, 2, 6, 0, 8, 5, 5, 9, 2, 9, 1, 1, 4, 7, 0, 7, 1, 0, 7, 0, 4, 0, 3, 1, 9, 8, 4, 9, 3, 1, 6, 4, 4, 3, 8, 2, 8, 9, 9, 5, 8, 4, 0, 0, 9, 1, 7, 8, 8, 4, 3, 9, 1, 1, 9, 0, 4, 2, 9, 6, 7, 6, 2, 3, 1, 2, 7, 8, 6
Offset: 0

Views

Author

Wolfdieter Lang, Sep 21 2022

Keywords

Comments

The other two roots are w1*phi^(1/3) - w2*(-1 + phi)^(1/3) = -0.16109267... + 1.75438095...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1; phi = A001622.
The hyperbolic function version is -sinh((1/3)*arcsinh(1/2)) + sqrt(3)*cosh((1/3)*arcsinh(1/2))*i, and its complex conjugate.

Examples

			0.32218535462608559291147071070403198493164438289958400917884391190429676...
		

Crossrefs

Programs

  • Maple
    h := ((1 + sqrt(5))/2)^(1/3): evalf(h - 1/h, 90); # Peter Luschny, Sep 24 2022
  • Mathematica
    RealDigits[Subtract @@ Surd[GoldenRatio, {3, -3}], 10, 100][[1]] (* Amiram Eldar, Sep 21 2022 *)
    RealDigits[Root[x^3+3x-1,1],10,120][[1]] (* Harvey P. Dale, Oct 09 2023 *)
  • PARI
    2*sinh((1/3)*asinh(1/2)) \\ Michel Marcus, Sep 23 2022

Formula

r = phi^(1/3) - phi^(-1/3), with phi = A001622.
r = phi^(1/3) - (-1 + phi)^(1/3).
r = 2*sinh((1/3)*arcsinh(1/2)).

A245720 Decimal expansion of the mean cluster density for bond percolation on the triangular lattice.

Original entry on oeis.org

1, 1, 1, 8, 4, 4, 2, 7, 5, 2, 8, 4, 5, 4, 9, 6, 9, 5, 6, 7, 5, 3, 4, 4, 3, 3, 6, 0, 5, 1, 6, 1, 1, 1, 8, 0, 3, 8, 2, 7, 5, 1, 1, 9, 4, 4, 1, 3, 2, 1, 2, 2, 0, 1, 4, 5, 8, 2, 8, 0, 0, 2, 3, 3, 5, 4, 6, 7, 2, 7, 3, 4, 0, 2, 4, 6, 6, 3, 2, 4, 6, 3, 0, 1, 5, 2, 4, 6, 6, 0, 9, 7, 2, 3, 1, 1, 5, 9, 5, 2, 2, 8, 4, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 30 2014

Keywords

Examples

			0.11184427528454969567534433605161118038275119441321220145828...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.18 Percolation Cluster Density Constants, p. 373.

Crossrefs

Cf. A130880.

Programs

  • Mathematica
    RealDigits[35/4 - 3/(2*Sin[Pi/18]), 10, 104] // First
  • PARI
    35/4 - 3/(2*sin(Pi/18)) \\ Stefano Spezia, May 17 2025

Formula

35/4 - 3/p_c, where p_c = A130880 = 2*sin(Pi/18) is the critical probability.
Previous Showing 11-14 of 14 results.