cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A177353 n! (mod n^2+1).

Original entry on oeis.org

1, 2, 6, 7, 16, 17, 40, 20, 30, 72, 108, 45, 20, 188, 206, 115, 240, 0, 12, 266, 0, 355, 440, 17, 612, 271, 260, 485, 302, 459, 884, 750, 930, 936, 1064, 1088, 860, 0, 196, 1430, 1218, 1725, 0, 143, 916, 870, 0, 1990, 2024, 2419, 2, 2610, 2770, 1355, 2040, 99, 0, 465, 310, 2015
Offset: 1

Views

Author

Vladimir Shevelev, Dec 18 2010

Keywords

Comments

a(n)=0 if n is in A120416. - Ivan Neretin, May 22 2015

Crossrefs

Programs

  • Mathematica
    Table[Mod[n!, n^2 + 1], {n, 60}]

A127482 Product of the nonzero digital products of all the prime numbers prime(1) to prime(n).

Original entry on oeis.org

2, 6, 30, 210, 210, 630, 4410, 39690, 238140, 4286520, 12859560, 270050760, 1080203040, 12962436480, 362948221440, 5444223321600, 244990049472000, 1469940296832000, 61737492466944000, 432162447268608000, 9075411392640768000, 571750917736368384000
Offset: 1

Views

Author

Alain Van Kerckhoven (alain(AT)avk.org), Sep 12 2007

Keywords

Examples

			a(7) = dp_10(2)*dp_10(3)*dp_10(5)*dp_10(7)*dp_10(11)*dp_10(13)*dp_10(17) = 2*3*5*7*(1*1)*(1*3)*(1*7) = 4410.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, a(n-1)*mul(
         `if`(i=0, 1, i), i=convert(ithprime(n), base, 10)))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 11 2022
  • Mathematica
    Rest[FoldList[Times,1,Times@@Cases[IntegerDigits[#],Except[0]]&/@ Prime[ Range[ 20]]]] (* Harvey P. Dale, Mar 19 2013 *)
  • PARI
    f(n) = vecprod(select(x->(x>1), digits(prime(n)))); \\ A101987
    a(n) = prod(k=1, n, f(k)); \\ Michel Marcus, Mar 11 2022
    
  • Python
    from math import prod
    from sympy import sieve
    def pod(s): return prod(int(d) for d in s if d != '0')
    def a(n): return pod("".join(str(sieve[i+1]) for i in range(n)))
    print([a(n) for n in range(1, 23)]) # Michael S. Branicky, Mar 11 2022

Formula

a(n) = Product_{k=1..n} dp_p(prime(k)) where prime(k)=A000040(k) and dp_p(m)=product of the nonzero digits of m in base p (p=10 for this sequence). - Hieronymus Fischer, Sep 29 2007
From Michel Marcus, Mar 11 2022: (Start)
a(n) = Product_{k=1..n} A051801(prime(k)).
a(n) = Product_{k=1..n} A101987(k). (End)

Extensions

Corrected and extended by Hieronymus Fischer, Sep 29 2007

A135104 Digital sum (base the n-th prime) of n^4.

Original entry on oeis.org

1, 4, 5, 10, 15, 24, 17, 28, 27, 60, 31, 36, 81, 70, 71, 68, 117, 96, 37, 120, 81, 100, 139, 192, 97, 176, 123, 174, 205, 128, 193, 126, 137, 220, 201, 216, 133, 196, 397, 296, 189, 396, 321, 256, 305, 280, 331, 396, 445, 292, 313, 256, 481, 556, 417, 326, 553, 256
Offset: 1

Views

Author

Hieronymus Fischer, Dec 24 2007

Keywords

Examples

			a(2) = ds_prime(2)(2^4) = ds_3(16) = 1+2+1 = 4;
a(6) = ds_prime(6)(6^4) = ds_13(1296) = 7+8+9 = 24.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[IntegerDigits[n^4, Prime[n]]], {n, 50}] (* G. C. Greubel, Sep 23 2016 *)
  • PARI
    a(n) = vecsum(digits(n^4, prime(n))); \\ Michel Marcus, Sep 24 2016

Formula

a(n) = ds_prime(n)(n^4), where ds_prime(n) = digital sum base the n-th prime.
a(n) = n^4 - (prime(n)-1)*Sum{k>0} ( floor(n^4/prime(n)^k) ).

A135105 Digital sum (base the n-th prime) of n^5.

Original entry on oeis.org

1, 4, 11, 16, 15, 12, 23, 44, 45, 40, 41, 72, 93, 98, 99, 48, 133, 108, 109, 160, 117, 172, 81, 120, 217, 176, 159, 102, 221, 144, 187, 262, 169, 304, 375, 276, 241, 158, 211, 316, 273, 72, 313, 320, 397, 406, 227, 582, 335, 236, 187, 460, 293, 274, 663, 178, 433, 538
Offset: 1

Views

Author

Hieronymus Fischer, Dec 24 2007

Keywords

Examples

			a(2) = ds_prime(2)(2^5) = ds_3(32) = 1+0+1+2 = 4;
a(6) = ds_prime(5)(5^5) = ds_11(3125) = 2+9+3+1 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[IntegerDigits[n^5,Prime[n]]],{n,60}] (* Harvey P. Dale, Jul 19 2013  *)
  • PARI
    a(n) = vecsum(digits(n^5, prime(n))); \\ Michel Marcus, Sep 24 2016

Formula

a(n) = ds_prime(n)(n^5), where ds_prime(n) = digital sum base the n-th prime.
a(n) = n^5 - (prime(n)-1)*Sum_{k>0} ( floor(n^5/prime(n)^k) ).

A135111 Numbers such that the digital sum base 2 and the digital sum base 3 are in a ratio of 2:3.

Original entry on oeis.org

5, 33, 78, 106, 116, 142, 150, 154, 156, 170, 178, 184, 202, 204, 210, 215, 226, 228, 278, 284, 294, 308, 312, 332, 338, 340, 344, 356, 377, 390, 396, 418, 420, 424, 450, 455, 467, 473, 483, 513, 526, 534, 550, 582, 586, 588, 596, 600, 612, 619, 624, 629
Offset: 1

Views

Author

Hieronymus Fischer, Dec 24 2007

Keywords

Examples

			a(1)=5, since ds_2(5):ds_3(5)=2:3.
		

Crossrefs

Programs

  • Maple
    select(t -> convert(convert(t,base,3),`+`)/convert(convert(t,base,2),`+`) = 3/2, [$1..1000]); # Robert Israel, Sep 26 2016
  • Mathematica
    Select[Range[500], 3*Total[IntegerDigits[#, 2]] == 2*Total[IntegerDigits[#, 3]] &] (* G. C. Greubel, Sep 26 2016 *)
  • PARI
    isok(n) = 2*vecsum(digits(n, 3)) == 3*vecsum(digits(n, 2)); \\ Michel Marcus, Sep 26 2016

A135123 Numbers such that the digital sum base 2 and the digital sum base 3 and the digital sum base 6 all are equal.

Original entry on oeis.org

1, 12, 13, 114, 115, 366, 367, 477, 687, 864, 865, 876, 877, 1086, 1087, 1305, 1326, 1327, 1386, 1387, 1596, 1597, 1626, 1627, 1656, 1657, 1746, 1747, 1836, 1837, 1956, 1957, 2595, 2607, 2646, 2647, 3276, 3277, 3906, 3907, 3948, 3949, 4068, 4069, 5438
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007

Keywords

Examples

			a(2)=12, since ds_2(12)=ds_3(12)=ds_6(12), where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 6]] &] (* G. C. Greubel, Sep 26 2016 *)

A135124 Numbers such that the digital sums in base 2, base 4 and base 8 are all equal.

Original entry on oeis.org

1, 64, 65, 4096, 4097, 4160, 4161, 262144, 262145, 262208, 262209, 266240, 266241, 266304, 266305, 16777216, 16777217, 16777280, 16777281, 16781312, 16781313, 16781376, 16781377, 17039360, 17039361, 17039424, 17039425, 17043456
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007, Dec 31 2008

Keywords

Comments

Written as base 64 numbers the sequence is 1,10,11,100,101,110,111,1000,1001, ... (cf. A007088)

Examples

			a(7)=4161, since ds_2(4161 )=ds_4(4161 )=ds_8(4161 ), where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 4]] == Total[IntegerDigits[#, 8]] &] (* G. C. Greubel, Sep 26 2016 *)
    With[{k = 64}, Rest@ Map[FromDigits[#, k] &, Tuples[{0, 1}, 5]]] (* Michael De Vlieger, Oct 28 2022 *)
    Select[Range[171*10^5],Length[Union[Total/@IntegerDigits[#,{2,4,8}]]]==1&] (* Harvey P. Dale, May 14 2025 *)
  • PARI
    a(n) = fromdigits(binary(n),64); \\ Kevin Ryde, Apr 02 2025

Formula

a(n) = (1/2)*Sum_{k=0..floor(log_2(n))} (1-(-1)^floor(n/2^k))*64^k.
G.f.: (1/(1-x))*Sum_{k>=0} 64^k*x^(2^k)/(1+x^(2^k)).

Extensions

Edited by N. J. A. Sloane, Jan 17 2009

A135125 Numbers such that the digital sum base 2 and the digital sum base 5 and the digital sum base 10 all are equal.

Original entry on oeis.org

1, 1300, 1301, 5010, 5011, 7102, 7103, 10050, 10051, 10235, 11135, 12250, 12251, 14015, 16102, 16103, 20060, 20061, 20206, 20207, 23230, 23231, 32012, 32013, 32302, 32303, 32410, 32411, 44000, 44001, 45010, 45011, 50012, 50013, 50300
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007

Keywords

Examples

			a(2)=1300, since ds_2(1300)=ds_5(1300)=ds_10(1300), where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 10]] &] (* G. C. Greubel, Sep 27 2016 *)

A135126 Numbers such that the digital sums in bases 3, 4, 5 and 6 all are equal.

Original entry on oeis.org

1, 2, 188, 668, 908, 1388, 1628, 2170, 2171, 2830, 2831, 3908, 4330, 4331, 6490, 6491, 8650, 8651, 10390, 10391, 10629, 12792, 12793, 12794, 17110, 17111, 17290, 17291, 25930, 25931, 36312, 36313, 36314, 37812, 37813, 37814, 41532, 41533, 41534
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007

Keywords

Examples

			a(3)=188, since ds_3(188)=ds_4(188)=ds_5(188)=ds_6(188)=8, where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 4]] ==  Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 6]] &] (* G. C. Greubel, Sep 27 2016 *)

A135128 Numbers such that the digital sums in bases 2, 3, 5 and 10 all are equal.

Original entry on oeis.org

1, 12250, 12251, 23230, 23231, 32410, 32411, 45010, 45011, 51130, 51131, 52030, 52031, 54010, 54011, 100053, 100090, 100091, 100305, 102250, 102251, 107002, 107003, 110134, 110170, 110171, 110350, 110351, 110460, 110461, 113050, 113051
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007

Keywords

Examples

			a(2)=12250 since ds_2(12250 )=ds_3(12250 )=ds_5(12250 )=ds_10(12250 )=10, where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[32000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 10]] &] (* G. C. Greubel, Sep 28 2016 *)
    Select[Range[120000],Length[Union[Total/@IntegerDigits[#,{2,3,5,10}]]]==1&] (* Harvey P. Dale, Mar 30 2024 *)
Previous Showing 11-20 of 21 results. Next