cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A132324 Decimal expansion of Product_{k>=1} (1+1/3^k).

Original entry on oeis.org

1, 5, 6, 4, 9, 3, 4, 0, 1, 8, 5, 6, 7, 0, 1, 1, 5, 3, 7, 9, 3, 8, 8, 4, 9, 1, 0, 6, 7, 2, 8, 8, 3, 5, 4, 1, 6, 5, 6, 9, 4, 2, 5, 9, 1, 9, 8, 9, 5, 0, 3, 5, 0, 0, 9, 4, 9, 6, 7, 2, 1, 0, 2, 9, 9, 2, 3, 0, 2, 1, 1, 0, 7, 2, 5, 8, 0, 9, 6, 7, 6, 6, 9, 3, 9, 0, 3, 6, 6, 0, 3, 6, 7, 7, 2, 9, 6, 3, 8, 8, 1, 5, 2, 6, 0
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

Half the constant A132323.

Examples

			1.56493401856701153793884910...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1+1/3^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    N[QPochhammer[-1/3,1/3]] (* G. C. Greubel, Dec 01 2015 *)

Formula

(1/2)*lim sup Product{k=0..floor(log_3(n))} (1+1/floor(n/3^k)) for n-->oo.
(1/2)*lim sup A132327(n)/A132027(n) for n-->oo.
(1/2)*lim sup A132327(n)/n^((1+log_3(n))/2) for n-->oo.
(1/2)*lim sup A132328(n)/n^((log_3(n)-1)/2) for n-->oo.
exp(Sum_{n>0} 3^(-n)*Sum_{k|n} -(-1)^k/k) = exp(Sum_{n>0} A000593(n)/(n*3^n)).
(1/2)*lim sup A132327(n+1)/A132327(n) = 1.56493401856701153793884910... for n-->oo.
Equals (-1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
From Amiram Eldar, Feb 19 2022: (Start)
Equals (sqrt(2)/2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} 1/A027871(n). (End)

A132325 Decimal expansion of Product_{k>=0} (1+1/10^k).

Original entry on oeis.org

2, 2, 2, 4, 4, 6, 9, 1, 3, 8, 2, 7, 4, 1, 0, 1, 2, 6, 4, 2, 5, 2, 1, 5, 6, 1, 3, 4, 1, 8, 8, 8, 1, 1, 6, 0, 7, 4, 9, 5, 0, 1, 4, 9, 3, 5, 1, 5, 5, 1, 8, 5, 6, 7, 1, 5, 7, 5, 9, 1, 6, 4, 7, 4, 0, 6, 6, 5, 0, 6, 9, 3, 8, 9, 7, 6, 2, 8, 2, 2, 0, 8, 7, 5, 2, 9, 4, 4, 4, 4, 5, 2, 8, 4, 2, 7, 0, 4, 7, 1, 1, 2, 9, 4, 8
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

Twice the constant A132326.

Examples

			2.22446913827410126425215613418881160749501...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1+1/10^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    2*N[QPochhammer[-1/10,1/10]] (* G. C. Greubel, Dec 02 2015 *)
  • PARI
    prodinf(x=0, 1+(1/10)^x) \\ Altug Alkan, Dec 03 2015

Formula

Equals lim sup_{n->oo} Product_{0<=k<=floor(log_10(n))} (1+1/floor(n/10^k)).
Equals lim sup_{n->oo} A132271(n)/n^((1+log_10(n))/2).
Equals lim sup_{n->oo} A132272(n)/n^((log_10(n)-1)/2).
Equals 2*exp(Sum_{n>0} 10^(-n)*Sum_{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*10^n)).
Equals lim sup_{n->oo} A132271(n+1)/A132271(n).
Equals 2*(-1/10; 1/10){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 02 2015
Equals sqrt(2) * exp(log(10)/24 + Pi^2/(12*log(10))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(10))) (McIntosh, 1995). - Amiram Eldar, May 20 2023

A132022 Decimal expansion of Product_{k>=0} (1 - 1/(2*6^k)).

Original entry on oeis.org

4, 5, 0, 7, 1, 2, 6, 2, 5, 2, 2, 6, 0, 3, 9, 1, 3, 0, 8, 3, 0, 0, 0, 0, 7, 8, 9, 5, 8, 3, 5, 2, 7, 1, 5, 5, 6, 0, 4, 4, 6, 7, 8, 5, 0, 0, 5, 4, 0, 0, 8, 5, 4, 7, 4, 3, 9, 0, 4, 5, 8, 3, 4, 8, 9, 2, 4, 4, 0, 9, 6, 0, 7, 5, 4, 0, 6, 2, 9, 4, 0, 7, 8, 2, 4, 3, 5, 3, 4, 5, 3, 1, 8, 6, 0, 8, 9, 6, 2, 6, 9, 2, 7
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.45071262522603913...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*6^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    (1/2)*N[QPochhammer[1/12, 1/6], 200] (* G. C. Greubel, Dec 20 2015 *)
  • PARI
    prodinf(x=0, 1-1/(2*6^x)) \\ Altug Alkan, Dec 20 2015

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_6(n))} floor(n/6^k)*6^k/n.
Equals lim inf_{n->oo} A132030(n)/n^(1+floor(log_6(n)))*6^(1/2*(1+floor(log_6(n)))*floor(log_6(n))).
Equals lim inf_{n->oo} A132030(n)/n^(1+floor(log_6(n)))*6^A000217(floor(log_6(n))).
Equals (1/2)*exp(-Sum_{n>0} 6^(-n)*Sum{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132030(n)/A132030(n+1).
Equals (1/2)*(1/12; 1/6){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
Equals Product_{n>=1} (1 - 1/A167747(n)). - Amiram Eldar, May 09 2023

A132024 Decimal expansion of Product_{k>=0} (1-1/(2*8^k)).

Original entry on oeis.org

4, 6, 4, 5, 6, 8, 8, 8, 3, 6, 8, 6, 4, 7, 6, 3, 9, 0, 9, 8, 1, 9, 5, 9, 5, 6, 9, 7, 4, 8, 4, 7, 8, 0, 1, 0, 8, 7, 0, 0, 5, 8, 5, 1, 5, 4, 9, 5, 1, 2, 3, 0, 6, 5, 5, 6, 6, 0, 8, 5, 6, 0, 5, 9, 7, 0, 6, 0, 9, 9, 5, 7, 6, 2, 7, 4, 4, 1, 5, 4, 3, 8, 4, 8, 7, 8, 8, 8, 1, 2, 5, 0, 7, 6, 2, 1, 9, 4, 7, 0, 8, 1, 7
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.46456888368647639098...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[1/2,1/8],10,120][[1]] (* Harvey P. Dale, May 23 2011 *)
  • PARI
    prodinf(k=0, 1 - 1/(2*8^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_8(n))} floor(n/8^k)*8^k/n.
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^(1/2*(1+floor(log_8(n)))*floor(log_8(n))).
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^A000217(floor(log_8(n))).
Equals (1/2)*exp(-Sum_{n>0} 8^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132032(n)/A132032(n+1).
Equals Product_{n>=0} (1 - 1/A013730(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Amiram Eldar, May 09 2023

A132023 Decimal expansion of Product_{k>=0} 1-1/(2*7^k).

Original entry on oeis.org

4, 5, 8, 7, 6, 6, 7, 2, 6, 6, 9, 9, 7, 6, 8, 9, 8, 5, 0, 2, 0, 0, 0, 5, 1, 5, 3, 3, 6, 9, 7, 4, 3, 7, 2, 1, 7, 8, 2, 5, 4, 6, 6, 8, 8, 7, 1, 4, 7, 3, 1, 8, 7, 0, 0, 7, 8, 2, 4, 4, 0, 1, 3, 8, 5, 0, 6, 9, 9, 7, 4, 4, 0, 3, 2, 6, 5, 9, 3, 0, 3, 6, 5, 2, 3, 7, 8, 1, 7, 1, 0, 9, 0, 4, 0, 5, 8, 4, 7, 5, 9, 8, 2
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.4587667266997689850200...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*7^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/7], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_7(n))} floor(n/7^k)*7^k/n.
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^(1/2*(1+floor(log_7(n)))*floor(log_7(n))).
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^A000217(floor(log_7(n))).
Equals 1/2*exp(-Sum_{n>0} 7^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132031(n)/A132031(n+1).
Equals Product_{n>=1} (1 - 1/A109808(n)). - Amiram Eldar, May 08 2023

A132025 Decimal expansion of Product_{k>=0} 1-1/(2*9^k).

Original entry on oeis.org

4, 6, 8, 9, 4, 5, 1, 7, 8, 3, 6, 7, 0, 2, 3, 6, 9, 3, 2, 8, 3, 2, 8, 0, 0, 3, 5, 4, 1, 8, 6, 5, 6, 3, 9, 4, 0, 6, 8, 0, 4, 5, 7, 5, 8, 6, 9, 8, 9, 8, 5, 6, 0, 1, 6, 7, 1, 9, 7, 9, 9, 2, 3, 2, 7, 4, 7, 5, 7, 3, 2, 8, 3, 4, 6, 7, 0, 4, 3, 8, 1, 7, 5, 4, 9, 5, 0, 9, 4, 2, 7, 5, 7, 0, 0, 0, 1, 5, 9, 1, 7, 1, 1
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.4689451783670236932832800...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*9^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/9], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_9(n))} floor(n/9^k)*9^k/n.
Equals lim inf_{n->oo} A132033(n)/n^(1+floor(log_9(n)))*9^(1/2*(1+floor(log_9(n)))*floor(log_9(n))).
Equals lim inf_{n->oo} A132033(n)/n^(1+floor(log_9(n)))*9^A000217(floor(log_9(n))).
Equals (1/2)*exp(-Sum_{n>0} 9^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132033(n)/A132033(n+1).
Equals Product_{n>=1} (1 - 1/A270369(n)). - Amiram Eldar, May 08 2023

A132021 Decimal expansion of Product_{k>=0} 1-1/(2*5^k).

Original entry on oeis.org

4, 3, 8, 7, 9, 6, 8, 3, 7, 2, 0, 3, 6, 3, 8, 5, 3, 1, 2, 6, 6, 7, 2, 9, 9, 9, 7, 1, 7, 7, 2, 5, 8, 3, 5, 9, 6, 0, 4, 5, 7, 4, 6, 3, 1, 2, 3, 9, 3, 5, 1, 1, 6, 5, 4, 1, 7, 7, 3, 6, 7, 5, 6, 4, 3, 6, 7, 9, 1, 0, 6, 6, 5, 6, 9, 8, 6, 6, 5, 0, 0, 6, 9, 2, 8, 9, 6, 6, 7, 2, 3, 8, 9, 8, 5, 4, 4, 0, 0, 6, 0, 2, 8
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.438796837203638531...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*5^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/5], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_5(n))} floor(n/5^k)*5^k/n.
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^(1/2*(1+floor(log_5(n)))*floor(log_5(n))).
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^A000217(floor(log_5(n))).
Equals (1/2)*exp(-Sum_{n>0} 5^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132029(n)/A132029(n+1).
Equals Product_{n>=0} (1 - 1/A020729(n)). - Amiram Eldar, May 08 2023

A132266 Decimal expansion of Product_{k>=0} (1 - 1/(2*12^k)).

Original entry on oeis.org

4, 7, 7, 3, 5, 2, 1, 7, 0, 2, 5, 4, 8, 9, 3, 8, 0, 1, 9, 8, 3, 3, 4, 2, 8, 6, 3, 6, 5, 8, 2, 0, 2, 3, 0, 3, 5, 0, 8, 8, 5, 9, 6, 4, 2, 1, 4, 4, 4, 5, 8, 5, 0, 0, 7, 6, 0, 3, 4, 5, 6, 1, 3, 8, 9, 1, 4, 1, 2, 8, 8, 8, 5, 7, 9, 1, 6, 3, 5, 2, 4, 7, 7, 2, 8, 0, 9, 4, 1, 6, 5, 3, 5, 3, 6, 1, 1, 3, 5, 0, 0, 3, 7, 2, 5
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Examples

			0.47735217025489380198334286365820...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1-1/(2*12^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    (1/2)*N[QPochhammer[1/24, 1/12], 200] (* G. C. Greubel, Dec 20 2015 *)
  • PARI
    prodinf(x=0, 1-1/(2*12^x)) \\ Altug Alkan, Dec 20 2015

Formula

lim inf (Product_{k=0..floor(log_12(n))} floor(n/12^k)*12^k/n) for n-->oo.
lim inf A132264(n)*12^((1+floor(log_12(n)))*floor(log_12(n))/2)/n^(1+floor(log_12(n))) for n-->oo.
lim inf A132264(n)*12^A000217(floor(log_12(n)))/n^(1+floor(log_12(n))) for n-->oo.
(1/2)*exp(-Sum_{n>0} 12^(-n)*Sum_{k|n} 1/(k*2^k)).
lim inf A132264(n)/A132264(n+1) = 0.47735217025489380... for n-->oo.
Equals (1/2)*(1/24; 1/12){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
Previous Showing 21-28 of 28 results.