cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A273372 Squares ending in digit 1.

Original entry on oeis.org

1, 81, 121, 361, 441, 841, 961, 1521, 1681, 2401, 2601, 3481, 3721, 4761, 5041, 6241, 6561, 7921, 8281, 9801, 10201, 11881, 12321, 14161, 14641, 16641, 17161, 19321, 19881, 22201, 22801, 25281, 25921, 28561, 29241, 32041, 32761, 35721, 36481, 39601, 40401
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2016

Keywords

Comments

Intersection of A000290 and A017281; also, union of A017282 and A017378. The square roots are in A017281 or in A017377 (numbers ending in 1 or 9, respectively). - David A. Corneth, May 22 2016

Crossrefs

Cf. A017281 (numbers ending in 1), A017283 (cubes ending in 1).
Cf. similar sequences listed in A273373.

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 1];
    
  • Magma
    [5*(10*n+(-1)^n-5)*(2*n+(-1)^n-1)/4+1: n in [1..50]];
    
  • Mathematica
    Table[5 (10 n + (-1)^n - 5) (2 n + (-1)^n - 1)/4 + 1, {n, 1, 50}]
  • Python
    A273372_list = [(10*n+m)**2 for n in range(10**3) for m in (1,9)] # Chai Wah Wu, May 24 2016
  • Ruby
    p (1..(n + 1) / 2).inject([]){|s, i| s + [(10 * i - 9) ** 2, (10 * i - 1) ** 2]}[0..n - 1] # Seiichi Manyama, May 24 2016
    

Formula

G.f.: x*(1 + 80*x + 38*x^2 + 80*x^3 + x^4) / ((1 + x)^2*(1 - x)^3).
a(n) = 10*A132356(n-1) + 1 = 5*(10*n+(-1)^n-5)*(2*n+(-1)^n-1)/4+1.
a(n) = (5*n - 5/2 + (3/2)*(-1)^n)^2 = 25*n^2 - 25*n + 17/2 + 15*n*(-1)^n - (15/2)*(-1)^n. - David A. Corneth, May 21 2016
a(n) = A090771(n)^2. - Michel Marcus, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3+sqrt(5))/50. - Amiram Eldar, Feb 16 2023

Extensions

Edited by Bruno Berselli, May 24 2016

A321383 Numbers k such that the concatenation k21 is a square.

Original entry on oeis.org

1, 15, 37, 79, 123, 193, 259, 357, 445, 571, 681, 835, 967, 1149, 1303, 1513, 1689, 1927, 2125, 2391, 2611, 2905, 3147, 3469, 3733, 4083, 4369, 4747, 5055, 5461, 5791, 6225, 6577, 7039, 7413, 7903, 8299, 8817, 9235, 9781, 10221, 10795, 11257, 11859, 12343, 12973, 13479
Offset: 1

Views

Author

Bruno Berselli, Nov 08 2018

Keywords

Crossrefs

Cf. A008805.
Numbers k such that the concatenation km is a square: A132356 (m = 1), A273365 (m = 4), A273366 (m = 5), A273367 (m = 6), A273368 (m = 9); missing sequence for m = 16; this sequence for m = 21; missing sequence for m = 24; A002378 (m = 25).

Programs

  • GAP
    List([1..50], n -> (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8);
    
  • Julia
    [div((50*(n-1)*n+3*(2*n-1)*(-1)^n+11), 8) for n in 1:50] |> println
  • Magma
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8: n in [1..50]];
    
  • Mathematica
    Table[(50 (n - 1) n + 3 (2 n - 1) (-1)^n + 11)/8, {n, 1, 50}]
  • Maxima
    makelist((50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8, n, 1, 50);
    
  • PARI
    vector(50, n, nn; (50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8)
    
  • PARI
    Vec(x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Nov 12 2018
    
  • Python
    [(50*(n-1)*n+3*(2*n-1)*(-1)**n+11)/8 for n in range(1, 50)]
    
  • Sage
    [(50*(n-1)*n+3*(2*n-1)*(-1)^n+11)/8 for n in (1..50)]
    

Formula

G.f.: x*(1 + 14*x + 20*x^2 + 14*x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 2*a(n-2) - a(n-4) + 50.
a(n) = (50*(n - 1)*n + 3*(2*n - 1)*(-1)^n + 11)/8. Therefore:
a(n) = (25*n^2 - 22*n + 4)/4 for even n;
a(n) = (25*n^2 - 28*n + 7)/4 for odd n.
Previous Showing 11-12 of 12 results.