A133779 Irregular array: n-th row lists the "isolated divisors" of n. A positive divisor k of n is isolated if neither k-1 nor k+1 divides n.
1, 0, 1, 3, 4, 1, 5, 6, 1, 7, 4, 8, 1, 3, 9, 5, 10, 1, 11, 6, 12, 1, 13, 7, 14, 1, 3, 5, 15, 4, 8, 16, 1, 17, 6, 9, 18, 1, 19, 10, 20, 1, 3, 7, 21, 11, 22, 1, 23, 6, 8, 12, 24, 1, 5, 25, 13, 26, 1, 3, 9, 27, 4, 7, 14, 28, 1, 29, 10, 15, 30, 1, 31, 4, 8, 16, 32, 1, 3, 11, 33, 17, 34, 1, 5, 7, 35, 6
Offset: 1
Examples
The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are adjacent and 4 and 5 are adjacent. So the isolated divisors of 20 are 10 and 20. Triangle begins: 1 - 1,3 4 1,5 6 1,7 4,8 1,3,9 5,10 1,11 6,12 1,13 7,14 1,3,5,15 4,8,16 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..12248 (Rows 1 <= n <= 2000).
- Index entries for sequences related to divisors of numbers
Programs
-
Maple
with(numtheory): a:=proc(n) local div,ISO,i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1, div)=false and member(div[i]+1, div)=false then ISO:=`union`(ISO,{div[i]}) end if end do end proc: 1; 0; for j from 3 to 30 do seq(a(j)[i],i=1..nops(a(j)))end do; # yields sequence in the form of an array - Emeric Deutsch, Oct 02 2007
-
Mathematica
Table[Select[Divisors@ n, NoneTrue[# + {-1 + 2 Boole[# == 1], 1}, Divisible[n, #] &] &] /. {} -> {0}, {n, 36}] // Flatten (* Michael De Vlieger, Aug 19 2017 *)
Extensions
More terms from Emeric Deutsch, Oct 02 2007
Extended by Ray Chandler, Jun 24 2008
Comments