cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A326740 Numbers which converge to 7 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

7, 71, 75, 107, 117, 127, 137, 147, 157, 167, 177, 187, 197, 207, 307, 407, 507, 523, 543, 607, 707, 711, 723, 747, 751, 807, 907, 1071, 1075, 1171, 1175, 1271, 1275, 1371, 1375, 1471, 1475, 1571, 1575, 1671, 1675, 1771, 1775, 1871, 1875, 1971, 1975, 2071
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			75 -> 7^5 = 16807 -> 1^6*8^0*7 = 7.
		

Crossrefs

A326741 Numbers which converge to 8 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

8, 23, 27, 33, 34, 81, 92, 108, 118, 128, 138, 148, 158, 168, 178, 188, 198, 208, 214, 222, 231, 248, 254, 262, 271, 287, 308, 319, 323, 329, 331, 333, 334, 341, 408, 412, 428, 432, 447, 459, 508, 608, 623, 632, 708, 748, 794, 808, 811, 822, 908, 913, 919, 921
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			33 -> 3^3 = 27 -> 2^7 = 128 -> 1^2*8 = 8.
		

Crossrefs

A326742 Numbers which converge to 9 under repeated application of the powertrain map of A133500.

Original entry on oeis.org

9, 25, 32, 52, 91, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 209, 228, 234, 242, 251, 279, 295, 309, 313, 321, 337, 377, 409, 418, 422, 509, 515, 521, 539, 544, 609, 709, 809, 814, 835, 909, 911, 965, 1025, 1032, 1052, 1091, 1125, 1132, 1152, 1191
Offset: 1

Views

Author

Martin Renner, Jul 22 2019

Keywords

Examples

			25 -> 2^5 = 32 -> 3^2 = 9.
		

Crossrefs

Programs

  • Python
    def powertrain(n):
        p, s = 1, str(n)
        if len(s)%2 == 1: s += '1'
        for b, e in zip(s[0::2], s[1::2]): p *= int(b)**int(e)
        return p
    def aupto(limit, target=0):
        alst = []
        for n in range(1, limit+1):
            m, ptm = n, powertrain(n)
            while m != ptm: m, ptm = ptm, powertrain(ptm)
            if m == target: alst.append(n)
        return alst
    print(aupto(1191, target=9)) # Michael S. Branicky, Sep 25 2021

A133048 Powerback(n): reverse the decimal expansion of n, drop any leading zeros, then apply the powertrain map of A133500 to the resulting number.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 1, 4, 9, 16, 25, 36, 49, 64, 81, 3, 1, 8, 27, 64, 125, 216, 343, 512, 729, 4, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 5, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 6, 1, 64, 729, 4096, 15625, 46656, 117649
Offset: 0

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 31 2007

Keywords

Comments

a(A221221(n)) = A133500(A221221(n)) = A222493(n). - Reinhard Zumkeller, May 27 2013

Examples

			E.g. 240 -> (0)42 -> 4^2 = 16; 12345 -> 54321 -> 5^4*3^2*1 = 5625.
		

Crossrefs

Cf. A131571 (fixed points), A133059 and A133134 (records); A133500 (powertrain).
Cf. A133144 (length of trajectory), A031346 and A003001 (persistence).
Cf. A031298.

Programs

  • Haskell
    a133048 0 = 0
    a133048 n = train $ dropWhile (== 0) $ a031298_row n where
       train []       = 1
       train [x]      = x
       train (u:v:ws) = u ^ v * (train ws)
    -- Reinhard Zumkeller, May 27 2013
  • Maple
    powerback:=proc(n) local a,i,j,t1,t2,t3;
    if n = 0 then RETURN(0); fi;
    t1:=convert(n, base, 10); t2:=nops(t1);
    for i from 1 to t2 do if t1[i] > 0 then break; fi; od:
    a:=1; t3:=t2-i+1;
    for j from 0 to floor(t3/2)-1 do a := a*t1[i+2*j]^t1[i+2*j+1]; od:
    if t3 mod 2 = 1 then a:=a*t1[t2]; fi;
    RETURN(a); end;
  • Mathematica
    ptm[n_]:=Module[{idn=IntegerDigits[IntegerReverse[n]]},If[ EvenQ[ Length[idn]],Times@@ (#[[1]]^#[[2]]&/@Partition[idn,2]),(Times@@(#[[1]]^#[[2]]&/@Partition[ Most[ idn],2]))Last[idn]]];Array[ptm,70,0] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2020 *)

A135381 a(n) = high point in trajectory of n under repeated application of powertrain map (see A133500).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32, 531441, 128, 256, 512, 30, 31, 32, 128, 81, 5832000, 729, 30840979456, 191102976, 102372436321763328, 40, 41, 42, 531441, 256, 1024, 531441, 531441, 5832000, 8470728, 50, 51, 32, 125, 625
Offset: 0

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 10 2007

Keywords

Examples

			The trajectory of 39 is 39 -> 19683 -> 5038848 -> 214990848 -> 17179869184 -> 1735247072139264 -> 19999187712 -> 102372436321763328 -> 8813365017182208 -> 0, so a(39) = 102372436321763328.
		

Crossrefs

Cf. A133500, A133501. For records see A135382, A135383.

Programs

  • Maple
    maxtraj := proc(n) local h,p,M,t1,t2,i; M:=100; t1:=n; h:=n; for i from 1 to M do t2:=powertrain(t1); if t2 = t1 then RETURN(n,h); fi; if t2 > t1 then h:=t2; fi; t1:=t2; od; RETURN(n,-1); end;

A222493 a(n) = A133500(A221221(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 4, 16, 27, 16, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 8, 16, 32, 64, 128, 256, 512, 1024, 3, 3, 6, 9, 12, 15, 18, 21, 24, 27
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2013

Keywords

Crossrefs

Programs

  • Haskell
    a222493 = a133500 . a221221

Formula

a(n) = A133048(A221221(n)), by definition of A221221.

A133504 Numbers that set records in A133500.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 32, 64, 128, 256, 512, 729, 2187, 6561, 19683, 65536, 262144, 390625, 1953125, 10077696, 40353607, 134217728, 387420489, 402653184, 536870912, 671088640, 805306368, 939524096, 1073741824, 1207959552, 1549681956, 1937102445
Offset: 1

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 03 2007

Keywords

Examples

			Factored forms are 0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 3^6, 3^7, 3^8, 3^9, 2^16, 2^18, 5^8, 5^9, 2^9*3^9, 7^9, 2^27, 3^18, 2^27*3, 2^29, 2^27*5, 2^28*3, 2^27*7, 2^30, 2^27*3^2, 2^2*3^18, 3^18*5,
2*3^19, 3^18*7, 2^3*3^18, 3^20, 2^4*3^18, 2^5*3^18, 2^6*3^18, 2^7*3^18, 2^8*3^18, 2^9*3^18, 3^24, 2^27*3^7, 3^25, 2^27*3^8, 3^26, 2^27*3^9, 3^27, 2^43, 2^16*3^18, 2^45, 2^18*3^18, 3^18*5^8, 2^27*5^9, ...
		

Crossrefs

Programs

  • Maple
    M:=100000; t1:=[]; t2:=[]; rec:=-1; for n from 0 to M do m:=powertrain(n); if m > rec then rec:=m; t1:=[op(t1),m]; t2:=[op(t2),n]; fi; od: lprint(t1); lprint(t2);

A133505 Numbers where records occur in A133500.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 25, 26, 27, 28, 29, 36, 37, 38, 39, 48, 49, 58, 59, 69, 79, 89, 99, 893, 894, 895, 896, 897, 898, 899, 994, 995, 996, 997, 998, 999, 2499, 2599, 2699, 2799, 2899, 2999, 3699, 3789, 3799, 3889, 3899, 3989, 3999, 4889, 4899, 4989, 4999, 5899
Offset: 1

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 03 2007

Keywords

Crossrefs

A133184 Let k'' be the result of applying the powertrain map of A133500 twice to k. Sequence gives conjectured list of all possible values of k''.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 20, 25, 27, 28, 32, 35, 36, 40, 45, 48, 49, 50, 54, 56, 64, 72, 80, 81, 96, 98, 125, 128, 140, 144, 160, 162, 180, 192, 196, 200, 216, 243, 245, 256, 270, 288, 320, 324, 343, 384, 392, 400, 432, 441, 480, 486
Offset: 1

Views

Author

J. H. Conway and N. J. A. Sloane, Jan 01 2008

Keywords

Comments

Sequence is believed to be finite.
All terms are members of A002473. Members of A002473 not present here are given in A133185. However, no proof is known that the missing numbers from A002473 (14, 21, 24, 30, ...) really are missing.
To settle this, one would, for example, have to prove that no number of the form 2^i*3^j*5^k*7^l exists with powertrain value 14.
The entries are based on a search of all numbers k such that k' = powertrain(k) <= 10^120.

A133503 Numbers for which iteration of the powertrain map of A133500 takes a record number of steps to converge.

Original entry on oeis.org

0, 10, 24, 26, 39, 3573, 26899, 68697, 497699, 3559595, 555959597395
Offset: 1

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 03 2007, Dec 04 2007, Dec 18 2007

Keywords

Comments

Where records occur in A133501.
This sequence is almost certainly finite.
The number 31395559595973 takes 16 steps to converge and may be the next term. It may also be the last term.
The next term is > 10^7 (and <= 31395559595973).

Examples

			The smallest number that takes 13 steps to converge is 497699, for which the trajectory is 497699 -> 11948427342082473984 -> 23554621393597287150649344 -> 2030652382202824185652602470400000 -> 101921587200000000 -> 38281250 -> 1679616 -> 1452729852 -> 1318305830625 -> 70312500 -> 96 -> 531441 -> 500 -> 0.
The smallest number that takes 15 steps to converge is 3559595 -> for which the trajectory is 3559595 -> 4634857177734375 -> 23122964691361341376561152 -> 1194842734208247398400000000 -> 23554621393597287150649344 -> 2030652382202824185652602470400000 -> 101921587200000000 -> 38281250 -> 1679616 -> 1452729852 -> 1318305830625 -> 70312500 -> 96 -> 531441 -> 500 -> 0.
The number 31395559595973 takes 16 steps to converge and so the next term is >= 16. The trajectory is 31395559595973 -> 471570692025125026702880859375 -> 34755118508614725279865110528 -> 23122964691361341376561152000000 -> 1194842734208247398400000000 -> 23554621393597287150649344 -> 2030652382202824185652602470400000 -> 101921587200000000 -> 38281250 -> 1679616 -> 1452729852 -> 1318305830625 -> 70312500 -> 96 -> 531441 -> 500 -> 0.
The smallest number that takes 16 steps to converge is 555959597395, for which the trajectory starts 555959597395 -> 471570692025125026702880859375 and then continues as above. - _Michael S. Branicky_, Jan 24 2022
		

Crossrefs

See A133508 for the corresponding numbers of steps. Cf. A133500, A133501.
See also A003001.

Extensions

a(11) from Michael S. Branicky, Jan 24 2022
Previous Showing 11-20 of 34 results. Next