A218748
a(n) = (45^n - 1)/44.
Original entry on oeis.org
0, 1, 46, 2071, 93196, 4193821, 188721946, 8492487571, 382161940696, 17197287331321, 773877929909446, 34824506845925071, 1567102808066628196, 70519626362998268821, 3173383186334922096946, 142802243385071494362571, 6426100952328217246315696
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 46*Self(n-1) - 45*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{46, -45}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218748(n):=(45^n-1)/44$ makelist(A218748(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218748(n)=45^n\44
A218749
a(n) = (46^n - 1)/45.
Original entry on oeis.org
0, 1, 47, 2163, 99499, 4576955, 210539931, 9684836827, 445502494043, 20493114725979, 942683277395035, 43363430760171611, 1994717814967894107, 91757019488523128923, 4220822896472063930459, 194157853237714940801115, 8931261248934887276851291, 410838017451004814735159387
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 47*Self(n-1) - 46*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{47, -46}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
(46^Range[0,20]-1)/45 (* Harvey P. Dale, Aug 17 2017 *)
-
A218749(n):=(46^n-1)/45$ makelist(A218749(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218749(n)=46^n\45
A218751
a(n) = (48^n - 1)/47.
Original entry on oeis.org
0, 1, 49, 2353, 112945, 5421361, 260225329, 12490815793, 599559158065, 28778839587121, 1381384300181809, 66306446408726833, 3182709427618887985, 152770052525706623281, 7332962521233917917489, 351982201019228060039473, 16895145648922946881894705, 810966991148301450330945841
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 49*Self(n-1)-48*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{49, -48}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218751(n):=floor((48^n-1)/47)$ makelist(A218751(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218751(n)=48^n\47
A364072
Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*63^(n-d-k), with 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 65, 1, 1, 4161, 192, 1, 1, 266305, 28545, 382, 1, 1, 17043521, 3891520, 101125, 635, 1, 1, 1090785345, 511266561, 23105270, 261780, 951, 1, 1, 69810262081, 66021638592, 4901267861, 89335610, 562296, 1330, 1, 1, 4467856773185, 8454558363265, 997262532182, 27503177191, 267021146, 1066366, 1772, 1
Offset: 0
The triangle begins:
1;
1, 1;
1, 65, 1;
1, 4161, 192, 1;
1, 266305, 28545, 382, 1;
1, 17043521, 3891520, 101125, 635, 1;
1, 1090785345, 511266561, 23105270, 261780, 951, 1;
...
-
T[n_,k_]:=Sum[Binomial[n,d]StirlingS2[n-d,k]63^(n-d-k),{d,0,n-k}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten
A350054
a(n) = (4^(3*n+2) - 7)/9.
Original entry on oeis.org
113, 7281, 466033, 29826161, 1908874353, 122167958641, 7818749353073, 500399958596721, 32025597350190193, 2049638230412172401, 131176846746379033713, 8395318191768258157681, 537300364273168522091633, 34387223313482785413864561
Offset: 1
Comments