cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A218748 a(n) = (45^n - 1)/44.

Original entry on oeis.org

0, 1, 46, 2071, 93196, 4193821, 188721946, 8492487571, 382161940696, 17197287331321, 773877929909446, 34824506845925071, 1567102808066628196, 70519626362998268821, 3173383186334922096946, 142802243385071494362571, 6426100952328217246315696
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 45 (A009989).

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-45*x)). - Vincenzo Librandi, Nov 08 2012
a(n) = 46*a(n-1) - 45*a(n-2) with a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 08 2012
a(n) = 45*a(n-1) + 1 with a(0)=0. - Vincenzo Librandi, Nov 08 2012
a(n) = floor(45^n/44). - Vincenzo Librandi, Nov 08 2012
E.g.f.: exp(23*x)*sinh(22*x)/22. - Elmo R. Oliveira, Aug 27 2024

A218749 a(n) = (46^n - 1)/45.

Original entry on oeis.org

0, 1, 47, 2163, 99499, 4576955, 210539931, 9684836827, 445502494043, 20493114725979, 942683277395035, 43363430760171611, 1994717814967894107, 91757019488523128923, 4220822896472063930459, 194157853237714940801115, 8931261248934887276851291, 410838017451004814735159387
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 46 (A009990).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-46*x)).
a(n) = 47*a(n-1) - 46*a(n-2) with a(0)=0, a(1)=1.
a(n) = 46*a(n-1) + 1 with a(0)=0.
a(n) = floor(46^n/45). (End)
E.g.f.: exp(x)*(exp(45*x) - 1)/45. - Elmo R. Oliveira, Aug 29 2024

A218751 a(n) = (48^n - 1)/47.

Original entry on oeis.org

0, 1, 49, 2353, 112945, 5421361, 260225329, 12490815793, 599559158065, 28778839587121, 1381384300181809, 66306446408726833, 3182709427618887985, 152770052525706623281, 7332962521233917917489, 351982201019228060039473, 16895145648922946881894705, 810966991148301450330945841
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 48 (A009992).

Crossrefs

Programs

Formula

a(n) = floor(48^n/47).
From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-48*x)).
a(n) = 49*a(n-1) - 48*a(n-2) with a(0)=0, a(1)=1.
a(n) = 48*a(n-1) + 1 with a(0)=0. (End)
E.g.f.: exp(x)*(exp(47*x) - 1)/47. - Elmo R. Oliveira, Aug 29 2024

A364072 Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*63^(n-d-k), with 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 65, 1, 1, 4161, 192, 1, 1, 266305, 28545, 382, 1, 1, 17043521, 3891520, 101125, 635, 1, 1, 1090785345, 511266561, 23105270, 261780, 951, 1, 1, 69810262081, 66021638592, 4901267861, 89335610, 562296, 1330, 1, 1, 4467856773185, 8454558363265, 997262532182, 27503177191, 267021146, 1066366, 1772, 1
Offset: 0

Views

Author

Stefano Spezia, Jul 04 2023

Keywords

Comments

T(n, k) is the number of 64-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R.

Examples

			The triangle begins:
  1;
  1,          1;
  1,         65,         1;
  1,       4161,       192,        1;
  1,     266305,     28545,      382,      1;
  1,   17043521,   3891520,   101125,    635,   1;
  1, 1090785345, 511266561, 23105270, 261780, 951, 1;
  ...
		

Crossrefs

Cf. A000012 (k=0), A133853 (k=1), A364069 (row sums), A364071, A364073.

Programs

  • Mathematica
    T[n_,k_]:=Sum[Binomial[n,d]StirlingS2[n-d,k]63^(n-d-k),{d,0,n-k}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten

A350054 a(n) = (4^(3*n+2) - 7)/9.

Original entry on oeis.org

113, 7281, 466033, 29826161, 1908874353, 122167958641, 7818749353073, 500399958596721, 32025597350190193, 2049638230412172401, 131176846746379033713, 8395318191768258157681, 537300364273168522091633, 34387223313482785413864561
Offset: 1

Views

Author

Wolfdieter Lang, Jan 20 2022

Keywords

Comments

Bisection of A350053, namely the even part. The odd part is given in A228871.

Crossrefs

Programs

  • Mathematica
    Table[(4^(3*n + 2) - 7)/9, {n, 1, 14}] (* Amiram Eldar, Jan 21 2022 *)
  • PARI
    a(n) = (4^(3*n+2) - 7)/9 \\ Winston de Greef, Jan 27 2024

Formula

a(n) = (2^(6*n+4) - 7)/9, n >= 1.
G.f.: x*(113 - 64*x)/((1 - x)*(1 - 64*x)).
a(n) = 112*A133853(n) + 1. - Hugo Pfoertner, Jan 21 2022
Previous Showing 31-35 of 35 results.