cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A175130 Indices of Fibonacci numbers that are not cubefree.

Original entry on oeis.org

6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 125, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 250, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324
Offset: 1

Views

Author

R. J. Mathar, Feb 16 2010

Keywords

Comments

Supersequence of A037917.
Conjecture: all terms are multiples of 6 or 125. - Harvey P. Dale, Apr 28 2020
The conjecture is false. The counterexamples are 392, 784, 1183, 1210, .... . - Amiram Eldar, Oct 16 2023

Examples

			Fibonacci(125) = 5^3 * 3001 * 158414167964045700001 = A000045(125) is not cubefree, which adds 125 to the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a175130 n = a175130_list !! (n-1)
    a175130_list = map (+ 1) $ findIndices ((== 0) . a212793) $ tail a000045_list
    -- Reinhard Zumkeller, May 27 2012
    
  • Mathematica
    Select[Range[350],Max[FactorInteger[Fibonacci[#]][[All,2]]]>2&] (* Harvey P. Dale, Apr 28 2020 *)
  • PARI
    is(n)=n>5 && vecmax(factor(fibonacci(n))[,2])>2 \\ Charles R Greathouse IV, Nov 07 2014

Formula

A000045 INTERSECT A046099.
A010056(a(n)) * (1 - A212793(a(n))) = 1. - Reinhard Zumkeller, May 27 2012

A269500 a(n) = Fibonacci(10*n).

Original entry on oeis.org

0, 55, 6765, 832040, 102334155, 12586269025, 1548008755920, 190392490709135, 23416728348467685, 2880067194370816120, 354224848179261915075, 43566776258854844738105, 5358359254990966640871840, 659034621587630041982498215, 81055900096023504197206408605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 03 2016

Keywords

Comments

More generally, the ordinary generating function for the Fibonacci(k*n) is F(k)*x/(1 - L(k)*x + (-1)^k*x^2), where F(k) is the k-th Fibonacci number (A000045), L(k) is the k-th Lucas number (A000032), or (phi^k - (-1/phi)^k)*x/(sqrt(5)*(1 - (phi^k + (-1/phi)^k)*x + (-1)^k*x^2)), where phi is the golden ratio (A001622).

Crossrefs

Cf. similar sequences of the form Fibonacci(k*n): A000045 (k = 1), A001906 (k = 2), A014445 (k = 3), A033888 (k = 4), A102312 (k = 5), A134492 (k = 6), A134498 (k = 7), A138473 (k = 8), A138590 (k = 9), this sequence (k = 10), A167398 (k = 11), A214855 (k = 15).
Cf. A000032 (Lucas numbers), A001622 (golden ratio).

Programs

  • Mathematica
    Fibonacci[10Range[0, 14]]
    FullSimplify[Table[(((1 + Sqrt[5])/2)^(10 n) - (2/(1 + Sqrt[5]))^(10 n))/Sqrt[5], {n, 0, 12}]]
    LinearRecurrence[{123, -1}, {0, 55}, 15]
  • PARI
    a(n) = fibonacci(10*n); \\ Michel Marcus, Mar 03 2016
    
  • PARI
    concat(0, Vec(55*x/(1-123*x+x^2) + O(x^100))) \\ Altug Alkan, Mar 04 2016

Formula

G.f.: 55*x/(1 - 123*x + x^2).
a(n) = 123*a(n-1) - a(n-2).
a(n) = A000045(10*n).
Lim_{n -> infinity} a(n + 1)/a(n) = phi^10 = 122.9918693812442…

A335976 Numbers k such that Fibonacci(6*k) is not a totient.

Original entry on oeis.org

0, 11, 13, 17, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 113, 121, 131, 137, 139, 141, 149, 151, 157, 167, 173, 191, 193, 199, 223, 229, 233, 239, 241, 243, 257, 263, 271, 281, 283, 293, 311, 313, 317, 321, 331, 339, 347, 349, 353, 373, 389, 397, 401, 419, 421, 431, 433, 443, 449, 457, 461, 479, 487, 509, 521, 541, 557, 573, 577, 587, 599, 613, 617, 619, 631, 641, 643, 653, 661, 673, 733, 739
Offset: 1

Views

Author

Altug Alkan, Jul 03 2020

Keywords

Comments

Conjecture: Sequence contains infinitely many primes.

Examples

			11 is a term since Fibonacci(66) = 27777890035288 is not a totient number.
		

Crossrefs

Programs

  • PARI
    isok(n) = !istotient(fibonacci(6*n))

Extensions

a(12)-a(20) from Max Alekseyev, Aug 02 2020
Terms a(21) onward from Max Alekseyev, May 19 2024
Previous Showing 11-13 of 13 results.