cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A136084 Son primes of order 7.

Original entry on oeis.org

3, 5, 11, 17, 23, 29, 31, 37, 43, 47, 53, 61, 67, 73, 83, 103, 107, 113, 131, 137, 139, 163, 173, 179, 181, 191, 193, 197, 199, 223, 229, 251, 269, 271, 281, 283, 293, 311, 353, 359, 367, 389, 401, 419, 421, 439, 443, 457, 463, 467, 499, 503, 509, 521, 547, 557
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=14;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136085 Son primes of order 8.

Original entry on oeis.org

3, 5, 29, 59, 71, 83, 101, 131, 149, 173, 239, 251, 281, 311, 401, 443, 449, 461, 491, 509, 563, 569, 653, 701, 719, 743, 761, 929, 953, 1109, 1151, 1193, 1223, 1259, 1289, 1301, 1373, 1451, 1511, 1553, 1571, 1583, 1613, 1619, 1811, 1913, 1931, 1949, 2039
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084.

Crossrefs

Programs

  • Mathematica
    n = 8; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=16;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136086 Son primes of order 9.

Original entry on oeis.org

5, 7, 11, 19, 29, 31, 41, 47, 67, 71, 89, 97, 109, 137, 139, 151, 157, 167, 181, 197, 211, 241, 251, 271, 277, 307, 311, 337, 367, 379, 397, 409, 421, 509, 557, 571, 587, 599, 601, 607, 619, 631, 641, 659, 661, 691, 701, 719, 727, 757, 769, 797, 811, 827, 839
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085.

Crossrefs

Programs

  • Mathematica
    n = 9; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=18;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136087 Son primes of order 10.

Original entry on oeis.org

3, 7, 11, 13, 19, 23, 37, 41, 59, 61, 67, 71, 73, 89, 101, 107, 109, 113, 127, 137, 139, 151, 167, 179, 181, 193, 197, 211, 223, 227, 239, 241, 257, 269, 271, 293, 311, 331, 347, 349, 353, 359, 367, 373, 409, 419, 421, 439, 443, 463, 479, 487, 491, 499, 509
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 8 see A136086.

Crossrefs

Programs

  • Mathematica
    n = 10; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=20;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136061 Primes p such that (p+4)/5 is also prime.

Original entry on oeis.org

11, 31, 61, 151, 181, 211, 331, 541, 631, 691, 751, 811, 991, 1051, 1201, 1381, 1531, 1741, 1831, 1861, 2161, 2281, 2311, 2731, 2851, 3001, 3061, 3301, 3361, 3541, 3631, 3691, 3931, 4051, 4111, 4261, 4591, 4831, 4951, 5101, 5431, 5581, 5641, 5851, 6151
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Equivalently: Mother primes of order 2. For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180.

Crossrefs

Programs

  • GAP
    A136061:=Filtered(Filtered([1..10^6],IsPrime),p->IsPrime((p+4)/5)); # Muniru A Asiru, Oct 10 2017
  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
    Select[Prime[Range[400]], PrimeQ[(# + 4) / 5]&] (* Vincenzo Librandi, Apr 14 2013 *)
  • PARI
    {forprime(p=1,1e4/*default(primelimit)*/, p%5-1 & next; isprime(p\5+1) & print1(p","))}  \\ M. F. Hasler, Feb 26 2012
    

A136066 Mother primes of order 7.

Original entry on oeis.org

31, 61, 151, 181, 241, 271, 331, 421, 541, 601, 631, 691, 991, 1051, 1171, 1231, 1321, 1531, 1621, 1951, 2221, 2251, 2341, 2671, 2851, 2971, 3331, 3391, 3571, 3931, 4021, 4051, 4201, 4231, 4591, 4651, 4951, 5281, 5581, 5821, 6121, 6271, 6301, 6451, 6481
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136051 Primes p such that 5*p-4 is also prime.

Original entry on oeis.org

3, 7, 13, 31, 37, 43, 67, 109, 127, 139, 151, 163, 199, 211, 241, 277, 307, 349, 367, 373, 433, 457, 463, 547, 571, 601, 613, 661, 673, 709, 727, 739, 787, 811, 823, 853, 919, 967, 991, 1021, 1087, 1117, 1129, 1171, 1231, 1291, 1297, 1399, 1471, 1483, 1549
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Previous name: Daughter primes of order 2.
For daughter primes of order 1 see A088878. For smallest daughter primes of order n see A136019 (also definition).

Crossrefs

Programs

  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a
    (* Second program: *)
    Select[Prime@ Range@ 250, PrimeQ[5 # - 4] &] (* Michael De Vlieger, Aug 04 2017 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(5*p-4), print1(p, ", ")))

Extensions

New name from Michel Marcus, Aug 04 2017

A136052 Daughter primes of order 3.

Original entry on oeis.org

5, 7, 11, 17, 19, 29, 31, 41, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 131, 137, 139, 151, 157, 167, 197, 211, 227, 229, 239, 269, 277, 307, 317, 331, 347, 349, 379, 401, 409, 419, 431, 439, 449, 461, 479, 509, 547, 601, 607, 619, 641, 647, 661, 677, 691
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For smallest daughter primes of order n see A136019 (also definition)

Crossrefs

Programs

  • Mathematica
    n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a

A136062 Mother primes of order 3.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 281, 421, 463, 491, 547, 617, 673, 701, 743, 757, 883, 911, 953, 967, 1051, 1093, 1163, 1373, 1471, 1583, 1597, 1667, 1877, 1933, 2143, 2213, 2311, 2423, 2437, 2647, 2801, 2857, 2927, 3011, 3067, 3137, 3221, 3347, 3557
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061.

Crossrefs

Programs

  • Mathematica
    n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136069 Mother primes of order 10.

Original entry on oeis.org

43, 127, 211, 337, 379, 463, 631, 757, 883, 967, 1093, 1471, 1723, 2017, 2143, 2269, 2647, 2731, 2857, 3109, 3613, 3739, 4159, 4663, 4789, 4999, 5503, 5881, 5923, 6133, 6427, 6553, 6637, 7057, 7309, 7393, 7687, 8317, 8779, 8821, 9199, 9283, 9661, 9787
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.

Crossrefs

Programs

  • Mathematica
    n = 10; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
Previous Showing 11-20 of 57 results. Next