A381277
Expansion of e.g.f. exp(sinh(3*x) / 3).
Original entry on oeis.org
1, 1, 1, 10, 37, 172, 1477, 8416, 74377, 683344, 5836969, 67102048, 699721453, 8268521536, 107106298093, 1347611617792, 19462095444241, 279380302430464, 4247519795325649, 68946703997616640, 1122787065355425973, 19697500164381137920, 351304020205694058133
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, 3^(n-k)*a136630(n, k));
A381285
Expansion of e.g.f. 1/(1 - sin(2*x) / 2).
Original entry on oeis.org
1, 1, 2, 2, -8, -104, -688, -3088, -128, 209536, 3145472, 29795072, 139389952, -1715047424, -60056147968, -1004215072768, -10305404960768, -1945682345984, 2949643589844992, 84438462955323392, 1458284922371571712, 12032890515685113856, -245515800089314459648
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1-Sin[2x]/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 09 2025 *)
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, k!*(2*I)^(n-k)*a136630(n, k));
A381382
E.g.f. A(x) satisfies A(x) = 1/( 1 - sinh(x * A(x)^2) / A(x)^2 ).
Original entry on oeis.org
1, 1, 2, 7, 48, 541, 7600, 120891, 2178176, 45053401, 1065957888, 28344376303, 831973593088, 26647344263541, 925300511922176, 34668496386129763, 1394928344160731136, 59986286728056665905, 2744940504174063714304, 133158543838350039763671
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(2*n-k+1, k)/(2*n-k+1)*a136630(n, k));
A381384
E.g.f. A(x) satisfies A(x) = 1/( 1 - sin(x * A(x)^2) / A(x)^2 ).
Original entry on oeis.org
1, 1, 2, 5, 0, -299, -5840, -90791, -1210496, -11174519, 71397888, 8367496301, 327020705792, 9709296136541, 226223975684096, 2946493117173761, -87437164233621504, -9675847870039338095, -535455805780063748096, -22518479178045130002731, -706013052362778282033152
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(2*n-k+1, k)/(2*n-k+1)*I^(n-k)*a136630(n, k));
A248836
Number of length n arrays x(i), i=1..n with x(i) in 0..i and no value appearing more than 2 times.
Original entry on oeis.org
1, 2, 6, 22, 96, 482, 2736, 17302, 120576, 917762, 7574016, 67354582, 642041856, 6530291042, 70589700096, 808090395862, 9766250151936, 124258689304322, 1660195646078976, 23239748527125142, 340125128186658816, 5194627679316741602, 82645634692238278656
Offset: 0
Some solutions for n=6
..1....1....1....1....1....0....1....0....0....0....1....0....1....1....1....0
..0....2....2....0....2....2....2....2....2....1....1....1....2....0....0....1
..0....3....0....1....2....1....2....1....1....1....0....3....0....1....2....0
..1....4....0....0....4....2....0....3....3....2....3....3....4....0....0....2
..4....0....3....4....3....4....4....0....1....5....4....2....2....2....2....4
..5....6....4....5....4....0....3....6....6....5....0....2....5....4....4....4
A351891
Expansion of e.g.f. exp( sinh(sqrt(2)*x) / sqrt(2) ).
Original entry on oeis.org
1, 1, 1, 3, 9, 25, 105, 443, 1969, 10609, 57265, 338547, 2190969, 14498185, 104277849, 784965803, 6150938593, 51229928929, 440694547681, 3967606065891, 37247506348905, 361022009762809, 3645855348771273, 38001754007842715, 409302848055407761, 4558828622414199121
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] 2^k a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
A351892
Expansion of e.g.f. exp( sinh(sqrt(3)*x) / sqrt(3) ).
Original entry on oeis.org
1, 1, 1, 4, 13, 40, 205, 952, 4921, 31168, 189145, 1318528, 9843781, 74869888, 632536933, 5475991552, 49996774897, 485393809408, 4829958877105, 50858117779456, 554544498995965, 6259096187060224, 73822470722135293, 894846287081242624, 11261265009125680681, 146272258394568687616
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sinh[Sqrt[3] x]/Sqrt[3]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 2 k] 3^k a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
A381180
E.g.f. A(x) satisfies A(x) = 1 + sin(x*A(x)) / A(x).
Original entry on oeis.org
1, 1, 0, -1, -8, -19, 64, 1091, 7680, -1415, -650752, -8575865, -35559424, 857890021, 21380186112, 203548592651, -1615715926016, -95486152906639, -1599622990659584, -1397194164399601, 657963431581974528, 18168041375501245021, 157453907927886725120, -6059840564222790027821
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(n-k+1, k)/(n-k+1)*I^(n-k)*a136630(n, k));
A381182
E.g.f. A(x) satisfies A(x) = 1/( 1 - A(x) * sin(x * A(x)) ).
Original entry on oeis.org
1, 1, 6, 71, 1288, 31661, 984640, 37085075, 1641305472, 83497838425, 4801347029504, 307975150996831, 21802395720298496, 1688562016007776261, 142023935786330431488, 12892154760586821775019, 1256251152910271399624704, 130793914073764385411654321, 14490427167940362294881615872
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(n+2*k+1, k)/(n+2*k+1)*I^(n-k)*a136630(n, k));
A381278
Expansion of e.g.f. exp(sin(3*x) / 3).
Original entry on oeis.org
1, 1, 1, -8, -35, -8, 1117, 6328, -19943, -513728, -2096711, 30574720, 447401845, 23791744, -59033858219, -527680180736, 4971322421425, 144677554315264, 430091284739185, -27641200139694080, -398305237630617971, 2876369985206861824, 145441158283475935309
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, (3*I)^(n-k)*a136630(n, k));
Comments