cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A152756 Bisection of A000533.

Original entry on oeis.org

1, 101, 10001, 1000001, 100000001, 10000000001, 1000000000001, 100000000000001, 10000000000000001, 1000000000000000001, 100000000000000000001, 10000000000000000000001
Offset: 1

Views

Author

Omar E. Pol, Dec 13 2008

Keywords

Comments

a(1)=1, for n>1, a(n) is the concatenation of "1", 2(n-1)-1 digits "0" and "1". - Omar E. Pol, Dec 14 2008

Examples

			n ..... a(n)
1 ....... 1
2 ...... 101
3 ..... 10001
4 .... 1000001
5 ... 100000001
		

Crossrefs

Programs

  • Magma
    [1] cat [10^(2*n)+1: n in [1..15]]; // Vincenzo Librandi, Jul 27 2014
  • Mathematica
    A152756[n_] := If[n == 1, 1, 100^(n-1) + 1]; Array[A152756, 20] (* or *)
    LinearRecurrence[{101, -100}, {1, 101, 10001}, 20] (* Paolo Xausa, Oct 05 2024 *)

Formula

Except the first term, a(n)=10^(2n-2)+1. - Robert G. Wilson v, Dec 14 2008
G.f.: x*(1-100*x^2)/(1-x)/(1-100*x). - Robert Israel, Jul 27 2014

A147816 Concatenation of n digits 1 and 2(n-1) digits 0.

Original entry on oeis.org

1, 1100, 1110000, 1111000000, 1111100000000, 1111110000000000, 1111111000000000000, 1111111100000000000000, 1111111110000000000000000, 1111111111000000000000000000, 1111111111100000000000000000000, 1111111111110000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2008

Keywords

Comments

a(n) is also A016152(n) written in base 2.

Examples

			n ...... a(n)
1 ....... 1
2 ...... 1100
3 ..... 1110000
4 .... 1111000000
5 ... 1111100000000
		

Crossrefs

Programs

  • Mathematica
    Array[(10^#-1)*10^(2*#-2)/9 &, 20] (* or *)
    LinearRecurrence[{1100, -100000}, {1, 1100}, 20] (* Paolo Xausa, Feb 27 2024 *)
  • PARI
    Vec(x/((100*x-1)*(1000*x-1))  + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = A138119(n)/10.
a(n) = 1100*a(n-1)-100000*a(n-2). G.f.: x / ((100*x-1)*(1000*x-1)). - Colin Barker, Sep 16 2013

A144564 Bisection of A147757.

Original entry on oeis.org

1, 101, 10101, 1011101, 101111101, 10111111101, 1011111111101, 101111111111101, 10111111111111101, 1011111111111111101, 101111111111111111101, 10111111111111111111101, 1011111111111111111111101, 101111111111111111111111101, 10111111111111111111111111101
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Examples

			n ...... a(n)
1 ....... 1
2 ...... 101
3 ..... 10101
4 .... 1011101
5 ... 101111101
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x(1+10x)(100x^2-10x+1)/((100x-1)(x-1)),{x,0,20}],x]] (* or *) Join[{1,101},Table[FromDigits[Join[{1,0},PadRight[ {},2n+1,1],{0,1}]],{n,0,20}]] (* Harvey P. Dale, Dec 26 2014 *)

Formula

G.f.: x*(1+10*x)*(100*x^2-10*x+1)/((100*x-1)*(x-1)). - R. J. Mathar, Aug 24 2011

A152764 Bisection of A138144.

Original entry on oeis.org

1, 111, 11011, 1100011, 110000011, 11000000011, 1100000000011, 110000000000011, 11000000000000011, 1100000000000000011, 110000000000000000011, 11000000000000000000011
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Examples

			n ...... a(n)
1 ....... 1
2 ...... 111
3 ..... 11011
4 .... 1100011
5 ... 110000011
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{101,-100},{1,111,11011,1100011},20] (* Harvey P. Dale, Nov 26 2019 *)
  • PARI
    Vec(-x*(10*x-1)*(10*x+1)^2/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

From Colin Barker, Sep 16 2013: (Start)
a(n) = 11+11*10^(2*n-3) for n>2.
a(n) = 101*a(n-1)-100*a(n-2) for n>4.
G.f.: -x*(10*x-1)*(10*x+1)^2 / ((x-1)*(100*x-1)). (End)

A147818 Period 4: repeat [5, 9, 9, 5].

Original entry on oeis.org

5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5
Offset: 1

Views

Author

Omar E. Pol, Nov 14 2008, Jan 25 2009

Keywords

Comments

Last digit of the number whose binary representation is the concatenation of n 1's, 2n-1 0's and n 1's.
a(n) is the final digit of A147539(n).

Crossrefs

Programs

Formula

a(n+1) = 7-2*cos(Pi*n/2)+2*sin(Pi*n/2). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1)-a(n-2)+a(n-3) for n>3. G.f.: x*(5*x^2+4*x+5)/((1-x)*(x^2+1)). [Colin Barker, Nov 04 2012]
a(n) = a(n-4) for n>4. - Wesley Ivan Hurt, Jul 09 2016

Extensions

More terms from R. J. Mathar, Jan 22 2009
Previous Showing 11-15 of 15 results.